Math, asked by rimamonira5050, 11 months ago

(a-1)x^2-2bxy-(a+1)y^2​

Answers

Answered by charliejaguars2002
2

Answer:

\Large\boxed{ax^2-x^2-2bxy-ay^2-y^2}

Step-by-step explanation:

Given:

(a-1)x²-2bxy-(a+1)y² (Solve to expand expression and distributive property)

To solve this problem, first you have to used the distributive property by expanding expressions.

Solutions:

First, you have to expand by using with distributive property.

\Large\boxed{\textnormal{DISTRIBUTIVE PROPERTY FORMULA}}}

\displaystyle A(B+C)=AB+AC

A=X²

B=A

C=1

Rewrite the whole problem down.

\displaystyle X^2a-X^2*1

\displaystyle AX^2-1*X^2

Multiply the numbers from left to right.

\displaystyle X^2*1=X^2

\displaystyle AX^2-X^2

AX^2-X^2-2bxy-(a+1)y^2

Expand solving with distributive property.

\displaystyle -y^2(a+1)

A=(-y²)

B=A

C=1

Change negative sign to positive sign.

+(-K)=-K

-Ay^2-1*y^2

Multiply.

Solve.

\displaystyle Y^2*1=Y^2

\displaystyle\boxed{-ay^2-y^2}

\Large\boxed{ax^2-x^2-2bxy-ay^2-y^2}

So, the correct answer is ax²-x²-2bxy-ay²-y².

Answered by AbhijithPrakash
6

Answer:

\mathrm{Expand}\:\left(a-1\right)x^2-2bxy-\left(a+1\right)y^2:\quad ax^2-x^2-2bxy-ay^2-y^2

Step-by-step explanation:

\left(a-1\right)x^2-2bxy-\left(a+1\right)y^2

=x^2\left(a-1\right)-2bxy-y^2\left(a+1\right)

\black{\mathrm{Expand}\:x^2\left(a-1\right):}

x^2\left(a-1\right)

\gray{\mathrm{Apply\:the\:distributive\:law}:\quad \:a\left(b-c\right)=ab-ac}

\gray{a=x^2,\:b=a,\:c=1}

=x^2a-x^2\cdot \:1

=ax^2-1\cdot \:x^2

\gray{\mathrm{Multiply:}\:1\cdot \:x^2=x^2}

=ax^2-x^2

=ax^2-x^2-2bxy-\left(a+1\right)y^2

\black{\mathrm{Expand}\:-y^2\left(a+1\right):}

-y^2\left(a+1\right)

\gray{\mathrm{Apply\:the\:distributive\:law}:\quad \:a\left(b+c\right)=ab+ac}

\gray{a=-y^2,\:b=a,\:c=1}

=-y^2a+\left(-y^2\right)\cdot \:1

\gray{\mathrm{Apply\:minus-plus\:rules}}

\gray{+\left(-a\right)=-a}

=-ay^2-1\cdot \:y^2

\gray{\mathrm{Multiply:}\:1\cdot \:y^2=y^2}

=-ay^2-y^2

=ax^2-x^2-2bxy-ay^2-y^2

Similar questions