A 10 kW drilling machine is used to drill a bore in a small aluminium block of mass 8.0 kg. How much is the rise in temperature of the block in 2.5 minutes, assuming 50% of power is used up in heating the machine itself or lost to the surroundings. Specific heat of aluminium = 0.91 J g–1 K–1
Answers
Answered by
10
Solution:
Power of the drilling machine, P = 10 kW = 10 × 103 W
Mass of the aluminum block, m = 8.0 kg = 8 × 103 g
Time for which the machine is used, t = 2.5 min = 2.5 × 60 = 150 s
Specific heat of aluminium, c = 0.91 J g–1 K–1
Rise in the temperature of the block after drilling = δT
Total energy of the drilling machine = Pt
= 10 × 103 × 150
= 1.5 × 106 J
It is given that only 50% of the power is useful.
Useful energy, ∆Q = (50/100) × 1.5 × 106 = 7.5 × 105 J
But ∆Q = mc∆T
∴ ∆T = ∆Q / mc
= (7.5 × 105) / (8 × 103 × 0.91)
= 103o C
Therefore, in 2.5 minutes of drilling, the rise in the temperature of the block is 103°C.
Answered by
4
Refer the attachment.
Attachments:
Similar questions
Social Sciences,
5 months ago
Hindi,
5 months ago
Math,
5 months ago
English,
11 months ago
Physics,
11 months ago
Social Sciences,
1 year ago