Math, asked by shikhadwivedijnv, 6 months ago

a = 1000, d = 100, Sum of terms = 118000. find the number of terms​

Answers

Answered by ab548
2

Answer:  The number of terms " n " are 40

PLEASE  MARK  MY  ANSWER  AS  BRAINLIEST  !

Step-by-step explanation:

a = 1000 = first term , d = 100 = difference of consecutive terms

S_{n} =118000 = sum of " n " number of terms.

Let the number of terms be " n "

as we know that ,  

                              S_{n} = \frac{n}{2} [2a+(n-1)d]

=>       118000 * 2 = n[ 2*1000 + ( n - 1 )100 ]

=>       236000 = 100[20n + n( n - 1 ) ]

=>       2360 = 20n + n^{2} - n

=>       n^{2} + 19n-2360=0

=>       n = \frac{-9+\sqrt{19^{2}-4.1.(-2360) } }{2.1}     AND    n = \frac{-9-\sqrt{19^{2}-4.1.(-2360) } }{2.1}

=>       n=\frac{-19+99}{2}  

BUT  n=\frac{-19-99}{2}     , neglect as number of terms can never be negative .

.:     n = 40

Similar questions