Environmental Sciences, asked by figueroakathrina, 2 months ago

A 100kW, 230V, shunt generator has an armature resistance and field resistance of 0.05Ω
and 57.5Ω. If the generator operates at rated voltage. SPL is 1.8kW, calculate
a) At what load does the generator achieve maximum efficiency?
b) What is the value of this maximum efficiency?

Answers

Answered by itzMissLove
1

Sachin Hindurao Vaze is a suspended Assistant Police Inspector of the Indian state of Maharashtra. He now is in custody of the National Investigation Agency for his alleged involvement in the murder of Mansukh Hiren and the 2021 Antilla Bomb Scare.

Answered by probrainsme101
0

Given:

Output power, P₀ = 100 kW = 100 × 1000 W = 100000 W

Potential difference, V = 230 V

Armature resistance, R₁ = 0.05 Ω

Field resistance, R₂ = 57.5 Ω

SPL = 1.8 kW  = 1800 W

Find:

a) Load at which the generator achieve maximum efficiency.

b) The value of this maximum efficiency.

Solution and explanation:

Field current, I_f = V/ R₂

                          = 230/57.5

                          = 4 A

Load current, I_L\\ = P_0/V

                           = 100000/230

                           = 434.8 A

Armature current, I_a = I_L + I_f = 434.8 + 4 = 438.8 A

Induced emf, E = V + I_aR_1 = 230 + 438.8 \times 0.05

                          = 230 + 21.94 = 251.94 V

For maximum efficiency, armature losses should be equal to the constant losses, i.e.,

P_c = I_a^2R_1

I_a = \sqrt{\frac{P_c}{R_1} }

Constant losses, P_c = I_f^2R_2 + SPL

                           P_c = 4^2 \times 57.5 + 1800\\P_c = 16 \times 57.5 + 1800\\P_c = 920 + 1800 = 2720 W

But at maximum efficiency, armature current is also maximum

I_a = I_{a_{max}}

I_{a_{max}} = \sqrt{\frac{2720}{0.05} }

I_{a_{max}} = \sqrt{54400}  = 233.24 \ A    

a)

Load current for maximum efficiency,    

I_L = I_{a_{max}} - I_f\\I_L = 233.24 - 4 = 229.24 \ A

b)

Output power, P_0 = 100000 W

Input power, P_i = P_o + P_c

                         = 100000 + 2720

                         = 102720 W

Hence, Maximum efficiency, \eta_{max} = \frac{P_o}{P_i} \times 100

                                                        = \frac{100000}{102720} \times 100

                                                        = 0.9735 \times 100 %

                                                        = 97.35 %

#SPJ3

                   

Similar questions