A 10mm long awl pin is placed vertically in front of a concave mirrior.A 5mm long image of the awl pin is formed at 30cm in front of the mirror. What is the focal length of the mirror????
Answers
Answer:
Answer:Apply the relation - (v / u) = m = hi / ho as
Answer:Apply the relation - (v / u) = m = hi / ho as= (- 5) / 10 = - {(- 30) / u}
Answer:Apply the relation - (v / u) = m = hi / ho as= (- 5) / 10 = - {(- 30) / u}=u = - 60 cm
Answer:Apply the relation - (v / u) = m = hi / ho as= (- 5) / 10 = - {(- 30) / u}=u = - 60 cmApply mirror formula as
Answer:Apply the relation - (v / u) = m = hi / ho as= (- 5) / 10 = - {(- 30) / u}=u = - 60 cmApply mirror formula as= (1 / v) + (1 / u)= 1 / f
Answer:Apply the relation - (v / u) = m = hi / ho as= (- 5) / 10 = - {(- 30) / u}=u = - 60 cmApply mirror formula as= (1 / v) + (1 / u)= 1 / f= 1 / (- 60) + 1 / (- 30)= 1 / f
Answer:Apply the relation - (v / u) = m = hi / ho as= (- 5) / 10 = - {(- 30) / u}=u = - 60 cmApply mirror formula as= (1 / v) + (1 / u)= 1 / f= 1 / (- 60) + 1 / (- 30)= 1 / f= 1 / (- 20) = 1 / f or f = - 20 cm
Answer:Apply the relation - (v / u) = m = hi / ho as= (- 5) / 10 = - {(- 30) / u}=u = - 60 cmApply mirror formula as= (1 / v) + (1 / u)= 1 / f= 1 / (- 60) + 1 / (- 30)= 1 / f= 1 / (- 20) = 1 / f or f = - 20 cmHence , the correct choice is b) -20 cm. The (-) ve sign indicates that the focal length lies in front of the mirror.