Physics, asked by priyadsouza572, 2 months ago

A 12v battery is connected to a circuit having 3 resister of resistance 2ohm,3ohm,6ohm in parallel. calculate the total resistance of a circuit. find the current passing through each resister

Answers

Answered by Blossomfairy
196

Given :

  • A 12v battery is connected to a circuit having 3 resistor of resistance 2Ω, 3Ω and 6Ω in parallel.

To Find :

  • The total resistance of a circuit.
  • The current passing through each resistor.

According to the question,

As we know that 3 resistor of resistance 2Ω, 3Ω and 6Ω are connected in parallel. So we will use the formula,

  \longrightarrow\sf{ \dfrac{1}{R}  =  \dfrac{1}{R _{1} }  + \dfrac{1}{R _{2}}  + \dfrac{1}{R _{3}} }

 \\

  \longrightarrow\sf{ \dfrac{1}{R}  =  \dfrac{1}{2}  + \dfrac{1}{3}  + \dfrac{1}{6} }

 \\

  \longrightarrow\sf{ \dfrac{1}{R}  =  \dfrac{3  + 2 + 1}{6} }

 \\

  \longrightarrow\sf{ \dfrac{1}{R}  =  \dfrac{6}{6}}

 \\

 \longrightarrow \sf{R\:  = 1}

\\

  • So,the total resistance of a circuit is 1 Ω.

Now,

  • V = IR

Where,

  • V = Voltage
  • I = Current
  • R = Resistance

V = IR

➝ 12 = I × 2

➝ 6 = I

I = 6 Ampere

V = IR

➝ 12 = I × 3

➝ 4 = I

I = 4 Ampere

V = IR

➝ 12 = I × 6

➝ 2 = I

I = 2 Ampere.

▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂

Attachments:

rsagnik437: Awesome ! :)
Blossomfairy: Thank you! :)
Answered by BrainlyRish
77

Given that , A 12 V ( Volt ) battery is connected to a circuit , The resistor of Resistance 2 Ω , 3 Ω & 6Ω are connected in parallel.

Exigency To Find : The Total ( or Equivalent ) Resistance of a circuit & the current passing through each resistor ?

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

⠀⠀⠀⠀⠀\underline{ \purple{\bf \:\:\bigstar  \: Finding  \:Total\:( \:or \:Equivalent \:) \: \:Resistance  \::\:}}\\

As , We know that ,

⠀⠀⠀⠀⠀When , The resistors are connected in parallel, then Total ( or Equivalent ) Resistance of a circuit will be ,

\qquad \dag\:\:\bigg\lgroup \pmb{\bf{ \:\:\dfrac{1}{R_{eq}} \:=\: \dfrac{1}{R_1 } + \:\dfrac{1}{R_2} \:+ \:\dfrac{1}{R_3} \: }}\bigg\rgroup \\\\

⠀⠀⠀⠀⠀Here \bf R_{eq} is the Total Resistance, \bf \:R_1 \:,\: R_2 \:\:\& \: R_3 \: are the resistors which are connected in parallel .

\qquad \dashrightarrow \sf \dfrac{1}{R_{eq}} \: =\: \dfrac{1}{R_1} \:+ \:\dfrac{1}{R_2 } \:+ \:\dfrac{1}{R_3} \:\\\\

⠀⠀⠀⠀⠀The resistor of Resistance 2 Ω , 3 Ω & 6Ω are connected in parallel.

\qquad \dashrightarrow \sf \dfrac{1}{R_{eq}} \: =\: \dfrac{1}{R_1} \:+ \:\dfrac{1}{R_2 } \:+ \:\dfrac{1}{R_3} \:\\\\\qquad \dashrightarrow \sf \dfrac{1}{R_{eq}} \: =\: \dfrac{1}{2} \:+ \:\dfrac{1}{3} \:+ \:\dfrac{1}{6} \:\\\\\qquad \dashrightarrow \sf \dfrac{1}{R_{eq}} \: =\: \dfrac{3 \:+\:2\:+\:+\:1}{6} \:\\\\\qquad \dashrightarrow \sf \dfrac{1}{R_{eq}} \: =\: \dfrac{6}{6} \:\\\\\qquad \dashrightarrow \sf \dfrac{1}{R_{eq}} \: =\: \cancel {\dfrac{6}{6}} \:\\\\\qquad \dashrightarrow \sf R_{eq} \: =\: 1 \:\\\\\qquad \dashrightarrow \underline {\boxed {\pmb{\frak{\pink{ \:R_{eq} \: =\: 1 \:}}}}}\:\:\bigstar \:\\\\

\qquad \therefore \:\underline {\sf \: Hence,  \:The \:Total \:Resistance \: will \; be \: \pmb{\bf 1 \: \Omega \:}\:.}\\\\

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

⠀⠀⠀⠀⠀\underline{ \purple{\bf \:\:\bigstar  \: Finding  \:Amount \:of \:Current \:through  \:each \:Resistor  \::\:}}\\

As, We know that ,

  • Formula for CURRENT :

\qquad \dag\:\:\bigg\lgroup \pmb{\bf{ \:\:V \: = \:I \: R \: }}\bigg\rgroup \\\\

⠀⠀⠀⠀⠀Here , V is the voltage of Battery , I is the amount of Current & R is the Resistance .

\qquad \underline {\purple {\maltese \:\bf 2 \:\Omega \:}}\\\\\qquad \dashrightarrow \sf \:\:V \: = \:I \: R \: \\

  • The V or Voltage of Battery is 12 V &
  • The R or Resistance of Resistor is 2 Ω .

\qquad \dashrightarrow \sf \:\:V \: = \:I \: R \: \\\\\qquad \dashrightarrow \sf \:\:12 \: = \:I \:(2) \: \\\\\qquad \dashrightarrow \sf \:\:I \: = \:\dfrac{12}{2} \: \\\\\qquad \dashrightarrow \sf \:\:I \: = \:6\: \\\\\qquad \dashrightarrow \underline {\boxed {\pmb{\frak{\pink{ \:I \:( \:or \: Current \:) \: =\: 6 \:Ampere \:}}}}}\:\:\bigstar \:\\\\

  • The Current passing through 2 Ω is 6 Ampere.

⠀⠀⠀⠀⠀

\qquad \underline {\purple {\maltese \:\bf 3  \:\Omega \:}}\\\\\qquad \dashrightarrow \sf \:\:V \: = \:I \: R \: \\

  • The V or Voltage of Battery is 12 V &
  • The R or Resistance of Resistor is 3 Ω .

\qquad \dashrightarrow \sf \:\:V \: = \:I \: R \: \\\\\qquad \dashrightarrow \sf \:\:12 \: = \:I \:(3) \: \\\\\qquad \dashrightarrow \sf \:\:I \: = \:\dfrac{12}{3} \: \\\\\qquad \dashrightarrow \sf \:\:I \: = \:4\: \\\\\qquad \dashrightarrow \underline {\boxed {\pmb{\frak{\pink{ \:I \:( \:or \: Current \:) \: =\: 4 \:Ampere \:}}}}}\:\:\bigstar \:\\\\

  • The Current passing through 3 Ω is 4 Ampere.

⠀⠀⠀⠀⠀

\qquad \underline {\purple {\maltese \:\bf 6  \:\Omega \:}}\\\\\qquad \dashrightarrow \sf \:\:V \: = \:I \: R \: \\

  • The V or Voltage of Battery is 12 V &
  • The R or Resistance of Resistor is 2 Ω .

\qquad \dashrightarrow \sf \:\:V \: = \:I \: R \: \\\\\qquad \dashrightarrow \sf \:\:12 \: = \:I \:(6) \: \\\\\qquad \dashrightarrow \sf \:\:I \: = \:\dfrac{12}{6} \: \\\\\qquad \dashrightarrow \sf \:\:I \: = \:2\: \\\\\qquad \dashrightarrow \underline {\boxed {\pmb{\frak{\pink{ \:I \:( \:or \: Current \:) \: =\: 2 \:Ampere \:}}}}}\:\:\bigstar \:\\\\

  • The Current passing through 6 Ω is 2 Ampere.

⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━⠀⠀⠀⠀⠀

\qquad\quad\underline{\bigstar\:{\pmb{\mathbb{ADDITIONAL\:INFORMATION \:\:: \: }} }}\\

▪︎⠀To Calculate Current ( I ) , we use ;

\qquad \qquad \leadsto \sf I \:=\:\dfrac{ \:Q \:}{\:T\:}\:\:

⠀⠀⠀⠀⠀Here I is the Current, Q is the Electrical charge & T is the Total Time taken .

▪︎⠀To Calculate Voltage ( V ) of Battery , we use ;

\qquad \qquad \leadsto \sf V \:=\:\dfrac{ \:E \:}{\:Q\:}\:\:

⠀⠀⠀⠀⠀Here , V is Voltage of Battery, E is the Energy & W is the amount of Work done .

⠀⠀⠀


rsagnik437: Great :)
Similar questions