Physics, asked by manojkumarbodhgaya12, 3 months ago

a
15) Draw a velocity time graph for an uniformly accelerated
object. using velocity time gaph,derive s=ut+1/2at2.
using
u Velocity time go
a
quash
3 T​

Answers

Answered by Anonymous
4

We are asked to derive, Second Equation of Motion that is s = ut + ½ at²

~ Firstly from the graph,

⇢ AO = DC = u (Initial velocity)

⇢ AD = OC = t (Time)

⇢ EO = BC = v (Final velocity)

~ Now let us derive!

Firstly let, the object is travelling a distance in time under uniform acceleration. Now according to the graph we are able to see that inside the graph the obtained area enclose within OABC(trapezium) under velocity time graph AB. Therefore, distance travelled by an object can be given by

\tt \Rightarrow Distance \: = Area \: enclosed \\ \\ \tt \Rightarrow s \: = Area \: enclosed \\ \\ \tt \Rightarrow s \: = OABC \\ \\ \tt \Rightarrow s \: = Area \: of \: rectangle \: + Area \: of \: \triangle \\ \\ \tt \Rightarrow s \: = Length \times Breadth + \dfrac{1}{2} \times Base \times Height \\ \\ \tt \Rightarrow s \: = AO \times AD + \dfrac{1}{2} \times AD \times BD \\ \\ \tt \Rightarrow s \: = u \times t + \dfrac{1}{2} \times t \times BD \\ \\ \tt \Rightarrow s \: = u \times t + \dfrac{1}{2} \times t \times at \\ \\ \tt \Rightarrow s \: = ut + \dfrac{1}{2} \times at^2 \\ \\ {\pmb{\sf{Henceforth, \: derived!}}}

How the value for BD came?

Firstly we can write BC as BD + DC. Now as BD have the velocity position and DC have the time position. Henceforth, we already know that

\tt \Rightarrow Acceleration \: = \dfrac{Change \: in \: velocity}{Time} \\ \\ \tt \Rightarrow a \: = \dfrac{Change \: in \: velocity}{Time} \\ \\ \tt \Rightarrow a \: = \dfrac{v-u}{t} \\ \\ \tt \Rightarrow a \: = \dfrac{BD}{t} \\ \\ \tt \Rightarrow at \: = BD

Attachments:
Similar questions