Physics, asked by harshvardhan270205, 7 months ago

 A 150 m long train moves towards south at a speed of 10 m/s. A sparrow flying at a speed of 5 m/s towards north crosses the train. What is the time taken by the sparrow to cross the train ?​

Answers

Answered by ItzArchimedes
38

Diagram :-

\setlength{\unitlength}{2mm}\begin{picture}(0,0)\put(-3,3){\begin{cases}\\\\\\\\\\\\\\\end{cases}}\thicklines \multiput(0,0)(2,0){2}{\line(0,3){1cm}}\put(-6.7,3){\sf\footnotesize 150m}\multiput(0,0)(0,5){2}{\line(3,0){4mm}}\multiput(0,6)(2,0){2}{\line(0,3){1cm}}\multiput(0,6)(0,5){2}{\line(3,0){4mm}} \multiput(0.8,5)(0.4,0){2}{\line(0,3){2mm}}\put(4,6){\vector(0,3){0.8cm}}\put(4,6){\circle*{0.5}}\put(4.5,6){\sf\footnotesize Sparrow}\put(4.5,8){\sf\footnotesize 5m/s}\put(4,-3){\sf\footnotesize Speed of train = 10m/s}\multiput(0,-4)(2,0){2}{\line(0,3){0.5cm}} \multiput(0,-1.5)(0,-2.5){2}{\line(3,0){0.4cm}}\multiput(0.57,-1.5)(0.57,0){2}{\line(0,3){2.8mm}}\multiput(0.5,6)(0.8,0){2}{\line(0,2){1cm}}\multiput(0.4,0)(1,0){2}{\line(0,3){1cm}}\put(0.4,-4){\line(0,2){5mm}}\put(1.5,-4){\line(0,2){5mm}}\put(0.15,-4.6){\boxed{\;}}\put(0.95,-2){\circle*{0.5}}\put(0.95,-3){\circle*{0.5}}\put(0.6,-5){\circle{0.5}}\put(1.5,-5){\circle{0.5}}\end{picture}

Solution :-

The sparrow is going towards north direction & the train is going towards south direction .

So ,the total speed of train & sparrow is

10 m/s + 5m/s = 15m/s

So , now finding time taken

Speed = \sf\dfrac{Distance}{Time}

Simplifying ,

Time = \sf\dfrac{Distance}{speed}

Substituting ,

  • Distance = 150m
  • Speed = 15m/s

\sf\leadsto Time = \dfrac{150}{15}

\sf\leadsto Time = \underline{\boxed{\textbf{\textsf{10s}}}}

Hence , time taken by the sparrow cross the train = 10s

Answered by Anonymous
9

Diagram :

\setlength{\unitlength}{1.2 mm}</p><p>\thicklines</p><p>\begin{picture}(19,5)\put(1,5.5){\line(2,0){34}}\put(1,5){\line(2,0){34}}\put(1,9){\line(2,0){34}}\put(7,1){\line(2,0){34}}\put(1,2){\line(2,0){40}}\put(35,5){\line(2,0){6}}\put(40,6){\line(0,1){2}}\put(38,6){\line(0,1){2}}\put(38,8){\line(2,0){2}} \put(35,6){\line(2,0){6}} \put(1,1){\line(2,0){20}}\put(1,10){\line(2,0){20}}\put(1,1){\line(0,1){9}}\put(25,1){\line(0,1){9}}\put(21,1){\line(2,0){20}}\put(15,10){\line(2,0){20}}\put(35,1){\line(0,1){9}}\put(12,1){\line(0,1){9}}\put(41,1){\line(0,1){5}}\put(39, 9){\circle*{2}}\put(39, 13){\circle*{3}}\put(39, 18){\circle*{4}}\put(30, 1){\circle{1}}\put(30, 1){\circle{2}}\put(30, 1){\circle{4}}\put(30, 1){\circle{4}}\put(6 , 1){\circle{1}}\put(6, 1){\circle{2}}\put(6, 1){\circle{4}}\put(6, 1){\circle{4}} \put(18 , 1){\circle{1}}\put(18, 1){\circle{2}}\put(18, 1){\circle{4}}\put(18, 1){\circle{4}}\put(40, 4){\circle*{1}}\put(36, 4){\circle*{1}}\put(50,4){$\tt {Given}\begin{cases} \sf{Distance=150 m}\\ \sf{Speed= 150 m/s}\\ \sf{Time=?}\end{cases}$}\end{picture}

Answer:

  • Distance to be covered by the sparrow = 150 m

  • Speed of train = 10 m/s

  • Speed of Sparrow = 5 m/s

Therefore, Total Distance = 10 + 5 = 15 m/s

Now, use the given below formula to Calculate Time taken (t) by the Sparrow to cross the train.

:\implies \sf Time = \dfrac{Distance}{Total  \: Time  \: taken} \\  \\

Now,Plug in the given values in above given formula :

:\implies \sf Time = \dfrac{150}{15} \\  \\  \\

:\implies \underline{ \boxed{\textsf{ \textbf{ Time = 10  seconds}}}} \\  \\  \\

\therefore\underline{\textsf{The time taken by the sparrow to cross the train is \textbf{10 seconds}}}. \\

Similar questions