Physics, asked by snenhlahladub, 1 year ago

A 15cm long 200g rod is provided at one end. A 20g ball of clay is stuck on the other and what is the period of the rod and clay ball swing as a pendulum

Answers

Answered by TheAnushka
122

\huge\underline{\underline{\rm Answer}}

\large\red{\boxed{\rm T=4.85sec}}

\huge\underline{\underline{\rm Solution}}

\large\underline{\underline{\sf Given:}}

  • Pivot Lenght (l) = 15cm

  • Mass of pivot (\rm{m_1}) = 200g or 0.2kg

  • Mass of ball (\rm{m_2})=20g or 0.02kg

\large\underline{\underline{\sf To\:Find:}}

  • Time period of the rod and clay ball swing as a pendulum (T) = ?

_________________________________________

Moment of Inertia of rod about pivot =\rm{\frac{m_1l^2}{3}}

Moment of Inertia of clay ball about pivot =\rm{m_2l^2}

\underline{\underline{\tt Combine\: moment\:of\:Inertia \:of\:pivot:}}

\large\implies{\rm I=\left(\frac{m_1}{3}+m_2\right)l^2}

\large\implies{\rm \left(\frac{0.2}{3}+0.02\right)(0.15)^2}

\large\implies{\rm \frac{0.2+0.06}{3}}

\Large\implies{\sf I=0.00195kg.m^2}

\underline{\underline{\tt Combined\:mass(M)=m_1+m_2}}

\large\implies{\rm M=0.2+0.02 }

\Large\implies{\sf M=0.22g }

\large\underline{\underline{\tt Time\:Period(T):}}

\large{\boxed{\rm T=2π \sqrt{\frac{l}{Mgl}}}}

\large\implies{\rm T=2π\sqrt{\frac{0.00195}{0.22×9.8×0.15}}}

\large\implies{\rm T= 2π×\sqrt{0.006} }

\large\implies{\rm T=2×\frac{22}{7}×0.077 }

\large\implies{\rm T=\frac{33.88}{7}}

\large\implies{\rm T=4.85sec}

Hence ,

Time period of the rod and clay ball swing as a pendulum is 4.84 sec

\large\red{\boxed{\rm T=4.85sec}}

Answered by Anonymous
5

Answer:

4.84 seconds

Explanation:

follow me I will follow you back and mark this brainliest answer plez

Similar questions