Math, asked by himanshumittal786, 10 months ago

a 19th term of an ap is equal to the three times ots 6th term .If its 9th term is 19.find the ap.​

Answers

Answered by amansharma264
6

 \bf \to \:  \green{{ \underline{given \div }}}

 \sf \to \: 19th \: term \: of \: an \: ap \: is \: equal \: to \: three \: times \: to \: 6th \: term \\  \\  \sf \to \: if \: its \: 9th \: term \:  = 19

 \bf \to \:  \pink{{ \underline{to \: find \: the \: ap \div }}}

 \bf  \to \:  \orange{{ \underline{step \:  -  \: by \:  -  \: step \:  - explanation}}}

 \sf \to \: 19th \: term \:  = 3(6th \: term) \\  \\   \sf \to \: \: { \underline{formula \: of \: nth \: term \: of \: an \: ap}} \\  \\  \sf \to \:  a_{n}  \:  = a \:  +  \: (n - 1)d \\  \\  \sf \to \: a \:  + 18d \:  = 3(a \:  + 5d) \\  \\  \sf \to \: a \:  + 18d \:  = 3a \:  + 15d \\  \\  \sf \to \: 3d \:  = 2a \:....(1) \\  \\  \sf \to \: 9th \: term \:  = 19 \\  \\  \sf \to \: a \:  + 8d = 19.....(2)

\\  \\  \sf \to \: from \: equation \: (1) \: we \: get \\  \\  \sf \to \: a \:  =  \frac{3d}{2}  ......(3) \\  \\  \sf \to \: put \:equation \: (3) \: in \: (2) \\  \\  \sf  \to \:  \frac{3d}{2}  + 8d \:  = 19 \\  \\  \sf \to \: 3d \:  + 16d \:  = 38 \\  \\  \sf \to \: 19d \:  = 38 \\  \\  \sf \to \: d \:  = 2 \\  \\ \sf \to \: put \: the \: value \: of \: d \:  = 2 \: in \: equation \: (3) \\  \\  \sf \to \: a \:  =  \frac{3 \times 2}{2}  = 3 \\  \\  \sf \to \: first \: term \:  = 3 \\  \\  \sf \to \: common \: difference \:  = 2

\\  \\  \sf \to \: first \: term \:  = a \:  = 3 \\  \\  \sf \to \: second \: term \:  = a \:  + d \:  = 3 + 2 = 5 \\  \\  \sf \to \: third \: term \:  = a \:  + 2d \:  = 3 + 2 \times 2 = 7 \\  \\  \sf \to \: fourth \: term \:  = a + 3d \:  = 3 + 3 \times 2 = 9 \\  \\  \sf \to \:  \green{{ \underline{sequence \: is \:  = 3 \:, 5 \: ,7 \:, 9 ,\: ......}}}

Answered by sharanyalanka7
1

Step-by-step explanation:

t

19

=3t

6

⇒3(a+(6−1)d)=a+(19−1)d

3(a+5d)=a+18d

3a+15d=a+18d

2a=3d

⇒d=

3

2

a

⇒t

9

=19

a+(9−1)d=19

a+8d=19

a+8×

3

2

a=19

3a+16a=19×3

19a=19×3

⇒a=3

⇒d=

3

2

a=

3

2

×3=2

∴ A.P is 3,5,7,9......

Hence, solved.

Similar questions