Physics, asked by MystícPhoeníx, 9 months ago

A 2.0 -cm-high object is placed 12cm from a convex lens perpendicular to its principal axis.The lens forms a real image whose size is 1.5cm .Find the power of the lens.

Answer With Full Explanation

❌ Copied Answer will directly Reported on the Spot ❌

[ Hint :- Answer is 175/9 D ]

Answers

Answered by MaIeficent
127

Explanation:

\bf{\underline{\underline\red{Given:-}}}

  • Height of the object = 2cm

  • Distance of object = 12cm

  • Height of image = 1.5cm

  • Type of lens - Convex lens

\bf{\underline{\underline\blue{To\:Find:-}}}

  • The power of the lens.

\bf{\underline{\underline\green{Solution:-}}}

To find the power of the lens, first we need to find the focal length.

In convex lens

\rm Height \: of \: object  \: (h_{o} )=  + ve

\rm Height \: of \: image  \: (h_{i} )=   -  ve

\rm Distance \: of \: object  \: (u) =   -  ve

\rm Distance \: of \: image  \:(v) =   + ve

As we know that:-

 \boxed{\rm  \leadsto Magnification = \frac{ h_{i} }h_{o} =  \frac{v}{u}   }

Here:-

   \rm h_{i} =  - 1.5cm

   \rm h_{o} = 2cm

   \rm u = -12cm

   \rm v =  ?

Substituting the values:-

   \implies \rm m=   \dfrac{ - 1.5}{2}  =  \dfrac{v}{ - 12}

   \implies\rm  v =   \dfrac{ - 1.5 \times 12}{2}

   \implies\rm  v =9cm

Let us find the focal length

By using lens formula

   \boxed{\rm   \leadsto  \frac{1}{f}   =  \frac{1}{v}  -  \frac{1}{u} }

 \implies {\rm  \dfrac{1}{f}   =  \dfrac{1}{9}  -  \dfrac{1}{( - 12)} }

 \implies  {\rm  \dfrac{1}{f}   =  \dfrac{1}{9}   +  \dfrac{1}{12} }

  \implies {\rm  \dfrac{1}{f}   =  \dfrac{4 + 3}{36}    }

  \implies {\rm  \dfrac{1}{f}   =  \dfrac{7}{36}    }

   \implies {\rm  f  =  \dfrac{36}{7} cm   }

Converting 36/7cm to metres

   \implies {\rm  f  =  \dfrac{36}{700}  m  }

    \boxed{\leadsto {\rm  Power =  \dfrac{1}{focal \: length(in \: metres)}   }}

   {\implies {\rm  P=  \dfrac{1}{ \frac{36}{700} }   }}

   \implies {\rm  P=  \dfrac{700}{36} = \dfrac{175}{9}  }

   \implies {\rm  P=  19.44 \: diaoptre  }

    \large\underline{\boxed{ \purple{\therefore \rm  Power \: of \: lens \:  =  19.44 \: D}} }

Answered by prateekmishra16sl
7

Answer: Power of given lens is 175/9 D

Explanation:

Power of lens = 1/f

Given :

Object distance = -12 cm = 0.12 m

Object height ⇒  h_o  = 2 cm = 0.02 m

Real image is inverted. Hence, image height ⇒ h_i = -1.5 cm = -0.015 m

Lens formula relates image distance, object distance and focal length of lens.

According to lens formula:

\frac{1}{v} - \frac{1}{u} = \frac{1}{f}

v ⇒ image distance

u ⇒ object distance

f ⇒ focal length of lens

\frac{1}{v} - \frac{1}{u} = \frac{1}{f}

Multiplying by u on both sides,

\frac{u}{v} - 1 = \frac{u}{f}

Magnification of lens ⇒ m = \frac{v}{u} = \frac{h_i}{h_o}

⇒  \frac{1}{m} - 1 = \frac{u}{f}

⇒  \frac{h_o}{h_i} - 1 = \frac{u}{f}

⇒  \frac{0.02}{-0.015} - 1 = \frac{-0.12}{f}

⇒  \frac{-4}{3} - 1 = \frac{-12}{100f}

⇒  \frac{-7}{3}  = \frac{-3}{25f}

⇒  \frac{7}{3}  = \frac{3}{25f}

⇒  \frac{7}{3}*\frac{25}{3}   = \frac{1}{f}

⇒  \frac{175}{9}  = \frac{1}{f}

Power of lens  = 175/9 D

#SPJ2

Similar questions