Math, asked by wwwsatyam529com, 3 months ago

a) α? + β2 +αβ= 0 give solution

Answers

Answered by gurneetsidhu38
1

Answer:

α=

2a

−b+

b

2

−4ac

and

\displaystyle\beta=\frac{{-{b}-\sqrt{{{b}^{2}-{4}{a}{c}}}}}{{{2}{a}}}β=

2a

−b−

b

2

−4ac

Sum of the roots α and β

We can add \displaystyle\alphaα and \displaystyle\betaβ as follows:

\displaystyle\alpha+\beta=\frac{{-{b}+\sqrt{{{b}^{2}-{4}{a}{c}}}}}{{{2}{a}}}+\frac{{-{b}-\sqrt{{{b}^{2}-{4}{a}{c}}}}}{{{2}{a}}}α+β=

2a

−b+

b

2

−4ac

+

2a

−b−

b

2

−4ac

\displaystyle=\frac{{-{2}{b}+{0}}}{{{2}{a}}}=

2a

−2b+0

\displaystyle=-\frac{b}{{a}}=−

a

b

We can multiply \displaystyle\alphaα and \displaystyle\betaβ as follows. First, recall that in general,

\displaystyle{\left({X}+{Y}\right)}{\left({X}-{Y}\right)}={X}^{2}-{Y}^{2}(X+Y)(X−Y)=X

2

−Y

2

and

\displaystyle{\left(\sqrt{{{X}}}\right)}^{2}={X}(

X

)

2

=X

We make use of these to obtain:

\displaystyle\alpha\times\beta=\frac{{-{b}+\sqrt{{{b}^{2}-{4}{a}{c}}}}}{{{2}{a}}}\times\frac{{-{b}-\sqrt{{{b}^{2}-{4}{a}{c}}}}}{{{2}{a}}}α×β=

2a

−b+

b

2

−4ac

×

2a

−b−

b

2

−4ac

\displaystyle=\frac{{{\left(-{b}\right)}^{2}-{\left(\sqrt{{{b}^{2}-{4}{a}{c}}}\right)}^{2}}}{{\left({2}{a}\right)}^{2}}=

(2a)

2

(−b)

2

−(

b

2

−4ac

)

2

\displaystyle=\frac{{{b}^{2}-{\left({b}^{2}-{4}{a}{c}\right)}}}{{{4}{a}^{2}}}=

4a

2

b

2

−(b

2

−4ac)

\displaystyle=\frac{{{4}{a}{c}}}{{{4}{a}^{2}}}=

4a

2

4ac

\displaystyle=\frac{c}{{a}}=

a

c

Summary

The sum of the roots \displaystyle\alphaα and \displaystyle\betaβ of a quadratic equation are:

\displaystyle\alpha+\beta=-\frac{b}{{a}}α+β=−

a

b

The product of the roots \displaystyle\alphaα and \displaystyle\betaβ is given by:

\displaystyle\alpha\beta=\frac{c}{{a}}αβ=

a

c

Similar questions