A^2+1/a^2=11 then the value of a^3-1/a^3=
Answers
Answered by
2
Question:
If a^2 + 1/a^2 = 11 , then find the value of a^3 - 1/a^3 .
Answer:
a^3 - 1/a^3 = 36
Note:
• (A+B)^2 = A^2 + B^2 + 2•A•B
• (A-B)^2 = A^2 + B^2 - 2•A•B
• A^2 - B^2 = (A+B)(A-B)
• A^3 - B^3 = (A-B)(A^2 + B^2 + A•B)
• A^3 + B^3 = (A+B)(A^2 + B^2 - A•B)
Solution:
We have;
a^2 + 1/a^2 = 11 --------(1)
We know that;
(A-B)^2 = A^2 + B^2 - 2•A•B
Thus,
=> (a -1/a)^2 = a^2 + (1/a)^2 - 2•a•(1/a)
=> (a -1/a)^2 = a^2 + 1/a^2 - 2•a•(1/a)
=> (a -1/a)^2 = 11 - 2 {using eq-(1)}
=> (a -1/a)^2 = 9
=> (a -1/a) = √9
=> (a -1/a) = 3 -------------(2)
Also,
We know that,
A^3 - B^3 = (A-B)(A^2 + B^2 + A•B)
Thus;
=> a^3-1/a^3=(a-1/a){a^2+1/a^2+a(1/a)}
=> a^3 - 1/a^3 = 3•(11 + 1)
=> a^3 - 1/a^3 = 3•12
=> a^3 - 1/a^3 = 36
Hence,
The required value of a^3 - 1/a^3 is 36.
Answered by
7
Answer:-
Step - by - step explanation:-
Used identities :-
Solution :-
According to the question,
We know that,
Now ,
Similar questions