Math, asked by shariq4788, 10 months ago

A^2+1/a^2=11 then the value of a^3-1/a^3=

Answers

Answered by Anonymous
2

Question:

If a^2 + 1/a^2 = 11 , then find the value of a^3 - 1/a^3 .

Answer:

a^3 - 1/a^3 = 36

Note:

• (A+B)^2 = A^2 + B^2 + 2•A•B

• (A-B)^2 = A^2 + B^2 - 2•A•B

• A^2 - B^2 = (A+B)(A-B)

• A^3 - B^3 = (A-B)(A^2 + B^2 + A•B)

• A^3 + B^3 = (A+B)(A^2 + B^2 - A•B)

Solution:

We have;

a^2 + 1/a^2 = 11 --------(1)

We know that;

(A-B)^2 = A^2 + B^2 - 2•A•B

Thus,

=> (a -1/a)^2 = a^2 + (1/a)^2 - 2•a•(1/a)

=> (a -1/a)^2 = a^2 + 1/a^2 - 2•a•(1/a)

=> (a -1/a)^2 = 11 - 2 {using eq-(1)}

=> (a -1/a)^2 = 9

=> (a -1/a) = √9

=> (a -1/a) = 3 -------------(2)

Also,

We know that,

A^3 - B^3 = (A-B)(A^2 + B^2 + A•B)

Thus;

=> a^3-1/a^3=(a-1/a){a^2+1/a^2+a(1/a)}

=> a^3 - 1/a^3 = 3•(11 + 1)

=> a^3 - 1/a^3 = 3•12

=> a^3 - 1/a^3 = 36

Hence,

The required value of a^3 - 1/a^3 is 36.

Answered by Anonymous
7

Answer:-

\implies \:  \boxed{ {a}^{3}  -  \frac{1}{ {a}^{3} }  = 36} \:

Step - by - step explanation:-

Used identities :-

 \star \:  \red{ {(x  -  y)}^{2}  =  {x}^{2} +  {y}^{2}    -  2xy} \\   \\  \star \:  {x}^{3}  -  {y}^{3}  = (x - y)( {x}^{2}  +  {y}^{2}  + xy)

Solution :-

According to the question,

 \: \star \:   {a}^{2}  +  \frac{1}{ {a}^{2} }  = 11 \\

We know that,

 { \bigg(a -  \frac{1}{a} \:  \bigg) }^{2}  =  {a}^{2}  +  \frac{1}{ {a}^{2} }  - 2 \times a \times  \frac{1}{a}  \\   \\  \because \:  {a}^{2}  +  \frac{1}{ {a}^{2} }  = 11 \\  \therefore \: { \bigg(a -  \frac{1}{a} \:  \bigg) }^{2} \:  = 11 - 2 \\  \\  \implies \: { \bigg(a -  \frac{1}{a} \:  \bigg) }^{2} \:  = 9 \\  \\ \bf{ taking \:  \sqrt{}  \:  \: on \: both \: sides} \\  \\  \implies \:  \sqrt{ { \bigg(a  -  \frac{1}{a} \bigg) }^{2} }  =  \sqrt{9}  \\  \\  \boxed{ \implies \: a  -   \frac{1}{a}  = 3} \\  \\

Now ,

  {a}^{3}  -  \frac{1}{ {a}^{ 3} }  = (a -  \frac{1}{a} )( {a}^{2}  +  \frac{1}{ {a}^{2} }  + a \times  \frac{1}{a} ) \\  \\   \because \: a -  \frac{1}{a} =  3 \:  \:  \: and \:  {a}^{2} +  \frac{1}{ {a}^{2} }   = 11 \\  \\  \therefore \:   {a}^{3}  -  \frac{1}{ {a}^{3} }  = 3(11 +1) \\  \\  \implies \:  {a}^{3}  -  \frac{1}{ {a}^{3} }  = 3 \times 12\\  \\  \implies \:  \boxed{ {a}^{3}  -  \frac{1}{ {a}^{3} }  = 36}

Similar questions