Math, asked by mahijanu0909, 11 months ago

A=(2,1) and B=(1,2) are the two points.if P is a point such that PA:PB=2:1,then the locus of P is

Answers

Answered by MaheswariS
3

\textbf{Given:}

\textsf{A(2,1) and B(1,2) and PA:PB=2:1}

\textbf{To find:}

\textsf{The locus of P}

\textbf{Solution:}

\textsf{Let the coordinates of the moving point P be (h,k)}

\mathsf{Consider,}

\mathsf{\dfrac{PA}{PB}=\dfrac{2}{1}}

\implies\mathsf{PA=2\,PB}

\implies\mathsf{\sqrt{(h-2)^2+(k-1)^2}=2\,\sqrt{(h-1)^2+(k-2)^2}}

\textsf{Squaring on bothsides, we get}

\mathsf{(h-2)^2+(k-1)^2=4[(h-1)^2+(k-2)^2]}

\mathsf{h^2+4-4h+k^2+1-2k=4[h^2+1-2h+k^2+4-4k]}

\mathsf{h^2+4-4h+k^2+1-2k=4h^2+4-8h+4k^2+16-16k}

\mathsf{h^2-4h+k^2-2k+5=4h^2-8h+4k^2-16k+20}

\mathsf{3h^2+3k^2-4h-14k+15=0}

\therefore\textsf{The locus of P is}

\boxed{\mathsf{3x^2+3x^2-4x-14y+15=0}}

\textbf{Find more:}

If A =(-2,3) and B=(4,1) are given points find the equation of locus of point P, such that PA=2PB.

https://brainly.in/question/3201572

A(c,0) and B(-c,0) are two points. If P is a point such that PA + PB = 2a where 0 < c < a, then find the locus of P.​

https://brainly.in/question/31492916

Similar questions
Math, 11 months ago