(a^2 + 1) b^2 - b^4 - a^2: factorise
hey, plz solve my question fastttt
Answers
Answered by
10
Solution :-
(a² + 1)b² - b⁴ - a²
= a²b² + b² - b⁴ - a²
Rearranging the terms we get,
= a²b² - b⁴ - a² + b²
It can be written as :
= a²b² - b²b² - a² + b²
Taking b² common we get,
= b²(a² - b²) - a² + b²
= b²(a² - b²) - 1(a² - b²)
= (b² - 1)(a² - b²)
= (b² - 1²)(a² - b²)
Expanding the terms using identity : x² - y² = (x + y)(x - y)
= (b + 1)(b - 1)(a + b)(a - b)
Therefore (b + 1)(b - 1)(a + b)(a - b) are the factors of (a² + 1)b² - b⁴ - a².
Answered by
127
Question :-
Factories it :
→ (a² + 1)b² - b⁴ - a²
Answer :-
→ ( a - b)(a + b)(b +1)(b - 1)
Explanation :-
We have ,
→ (a² + 1)b² - b⁴ - a²
→ a² b² + b² - b⁴ - a²
→ a² b² - b⁴ + b² - a²
→b² ( a² - b² ) -( - b² + a²)
→ b²(a² - b²)-(a² - b²)
→ (a² - b²)(b² - 1)
we can write it ,
→ ( a - b)(a + b)(b +1)(b - 1)
________________
Hope it will help you : )
Similar questions
Math,
5 months ago
Biology,
5 months ago
Science,
5 months ago
Math,
10 months ago
CBSE BOARD X,
10 months ago