Math, asked by anjali9170, 1 year ago

A=(-2,1) B=(4,5) and c is a point on locus eqution in y square 4x find the equation of the locus of the centroid of ∆ABC

Answers

Answered by MaheswariS
0

Answer:

The required locus is

9y^2-12x-36y+44=0

Step-by-step explanation:

Formula used:

Centroid of a triangle having vertices

(x_1,y_1),\:(x_2,y_2)\:and\:(x_3,y_3)\:is

(\frac{x_1+x_2+x_3 }{3},\frac{y_1+y_2+y_3 }{3})

Given points are A(-2,1) and B(4,5)

Let the co ordinates of the C be (a,b)

Let (h, k) be the centroid of ΔABC.

Then

(\frac{x_1+x_2+x_3 }{3},\frac{y_1+y_2+y_3 }{3})=(h,k)

(\frac{-2+4+a}{3},\frac{1+5+b}{3})=(h,k)

(\frac{2+a}{3},\frac{6+b}{3})=(h,k)

\frac{2+a}{3}=h

2+a=3h

a=3h-2

\frac{6+b}{3}=k

6+b=3k

b=3k-6

since (a,b) lies on y^2=4x

(3k-6)^2=4(3h-2)

9k^2+36-36k=12h-8

9k^2-12h-36k+44=0

Therefore, the locus of (h,k) is

9y^2-12x-36y+44=0

Similar questions