(a^2+1)(x^2-1)-a^2(a^2+2)x factorise
Answers
hi mate,
solution: (a^2+1)(x^2-1)-a^2(a^2+2)x
Equation at the end of step 1 :
(((a^2)+1)•((x^2)-1))-(a^2•(a^2+2)•x)
Step 2 :
Equation at the end of step 2 :
(((a^2)+1)•((x^2)-1))-a®2x•(a^2+2)
Find roots (zeroes) of : F(a) = a^2+1
Factoring: x^2-1
Theory : A difference of two perfect
squares, A^2 - B^2 can be factored into (A+B) • (A-B)
Proof : (A+B) • (A-B) =
A^2 - AB + BA - B^2 =
A^2 - AB + AB - B^2 =
A^2 - B^2
Note : AB = BA is the commutative property of multiplication.
Note : - AB + AB equals zero and is therefore eliminated from the expression.
Check : 1 is the square of 1
Check : x^2 is the square of x1
Factorization is : (x + 1) • (x - 1)
Equation at the end of step 3 :
(a^2+1)•(x+1)•(x-1)-a^2x•(a^2+2)
Step 4 :
Step 5 :
Pulling out like terms :
5.1 Pull out like factors :
-a^4x + a^2x^2 - 2a^2x - a^2 + x^2 - 1 =
-1 • (a^4x - a^2x^2 + 2a^2x + a^2 - x^2 + 1)
Trying to factor by pulling out :
5.2 Factoring: a^4x - a^2x^2 + 2a^2x + a^2 - x^2 + 1
Thoughtfully split the expression at hand into groups, each group having two terms :
Group 1: 2a^2x + a^2
Group 2: a^4x - a^2x^2
Group 3: -x^2 + 1
Pull out from each group separately :
Group 1: (2x + 1) • (a^2)
Group 2: (a^2 - x) • (a^2x)
Group 3: (-x^2 + 1) • (1) = (x^2 - 1) • (-1)
Looking for common sub-expressions :
Group 1: (2x + 1) • (a^2)
Group 3: (x^2 - 1) • (-1)
Group 2: (a^2 - x) • (a^2x)
Final result :
-a^4x + a^2x^2 - 2a^2x - a^2 + x^2 - 1