Math, asked by welcometohellv, 1 year ago


a. 2 + 2² + 2³ + 2⁴ + ... 2n
Find the general formula

Answers

Answered by mysticd
11

Answer:

 \red {General \: formula\:of \: 2+2^{2}+2^{3}+2^{4}+\cdot\cdot\cdot+2^{n}}

\green {=2(2^{n} -1)}

Step-by-step explanation:

 Given \: 2+2^{2}+2^{3}+2^{4}+\cdot\cdot\cdot+2^{n}

 Let \: S_{n} =2+2^{2}+2^{3}+2^{4}+\cdot\cdot\cdot+2^{n}

 First \:term (a) = 2

 Second \:term (a_{2}) = 2^{2}

and \: a_{3} = 2^{3}

\blue {\frac{ a_{2}}{a_{1}}}=\frac{2^{2}}{2}=\pink {2}

\blue {\frac{ a_{3}}{a_{2}}}=\frac{2^{3}}{2^{2}}=\pink {2}

Therefore.,

\blue {\frac{ a_{2}}{a_{1}}} =\blue {\frac{ a_{3}}{a_{2}}}=\pink {2}

 Given \: Sequence \: is \: Geometric \:progression

 \blue {common \: ratio(r)} \pink {=2}

 \boxed {\orange {Sum \: of \: n\: terms (S_{n}) = \frac{a(r^{n}-1)}{(r-1)}}}

 S_{n} = \frac{ 2(2^{n}-1)}{2-1}\\

 = 2(2^{n} -1)

Therefore.,

 \red {General \: formula (S_{n}) }\green {=2(2^{n} -1)}

•••♪

Answered by nalinsingh
4

Answer:

Step-by-step explanation:

Attachments:
Similar questions