a) 2^2x + 3.2^x - 4 = 0
Answers
Step-by-step explanation:
let 2^x=y_____(i)
squaring both sides
2^2x=y^2
=2y^2+3y-4=0
By quardratic equation
y=-3+-square root 3^2-4(2)(-4)
_____________________
2(2)
y=-3+-square root9+32
________________
4
y=-3+-square root41
_______________
4
put the value of y in (i)
2^x=-3+-square root41
______________
4
2^x=-3+square root41. 2^x=-3-square root 41
_____________. _____________
4. 4
not possible
Answer:
x = 0
Step-by-step explanation:
given
2^2x+3.2^x-4=0
(2^x) ^2+3.(2^x) -4 =0
Let 2^x = a
now,
or, (a) ^2+3a -4 =0
or, a^2 +3a -4 =0
or, a^2+(4-1) a -4 =0
or, a(a+4) - 1(a+4) =0
or, ( a-1) (a+4) =0
either a + 4 =0
or, a = -4 Not possible value.
either a- 1 =0
or, a = 1
:. 2^x = ( 2)° [ a = 2^x]
so, x = 0.