Math, asked by phacakes09, 7 months ago

A(2, 5), B(2, -3), and D(-6, 5) are three vertices of square ABCD. What are the coordinates of the fourth vertex, C?

Answers

Answered by Cosmique
19

Given :

  • A (2, 5) , B (2, -3) , D (-6, 5) are three vertices of square ABCD.

To find :

  • Coordinates of fourth vertex, C(x, y) =?

Knowledge required :

  • Diagonals of Square bisect each other perpendicularly.

  • Mid point formula

\red{\bigstar}\boxed{\sf{(x\;,\;y)=\left(\dfrac{x_1+x_2}{2}\;,\;\dfrac{y_1+y_2}{2}\right)}}

[ where (x, y) are the coordinates of mid-point of line segment joining points (x₁, y₁) and (x₂, y₂) ]

Solution :

Let, diagonals AC and BD of square ABCD bisect each other at a point O with coordinates (m, n)

then,

since, Point O (m, n) bisect Diagonal BD therefore,

Using Mid-point formula

\implies\sf{(m\;,\;n)=\left(\dfrac{(2)+(-6)}{2}\;,\;\dfrac{(-3)+(5)}{2}\right)}

\implies\sf{(m\;,\;n)=\left(\dfrac{-4}{2}\;,\;\dfrac{2}{2}\right)}

\implies\underline{\underline{\red{\sf{(m\;,\;n)=(-2\;,\;1)}}}}

Also,

since, Point O (m, n) also bisect Diagonal BC therefore,

Using mid-point formula

\implies\sf{(m\;,n)=\left(\dfrac{(2) + (x) }{2} \;,\;\dfrac{(5)+(y)}{2}\right)}

putting values of (m, n)

\implies\sf{(-2\;,1)=\left(\dfrac{(2) + (x) }{2} \;,\;\dfrac{(5)+(y)}{2}\right)}

\implies\sf{-2=\dfrac{(2) + (x) }{2} \;,\;1=\dfrac{(5)+(y)}{2}}

\implies\sf{2+x=-4\;,\;\ 5+y=2}

\implies\sf{x=-4-2\;,\;\ y=2-5}

\implies\boxed{\underline{\underline{\red{\large{\sf{x=-6\;,\;\ y=-3}}}}}}\;\;\;\red{\bigstar}

therefore,

  • Coordinates of fourth vertex are (-6, -3).

Answered by EnchantedGirl
25

\mathfrak{\blue{\underline{Given :-}}}

  • A (2, 5) , B (2, -3) , D (-6, 5) are three vertices of square ABCD.

\mathfrak{\red{\underline{To \: Find :-}}}

• The Coordinates of fourth vertex, C.

\mathfrak{\green{\underline{Concept :-}}}

  • Diagonals of Square bisect each other perpendicularly.

  • Mid point formula : -

✧\red{\boxed{\sf{(x\;,\;y)=(\dfrac{x_1+x_2}{2}\;,\;\dfrac{y_1+y_2}{2})}}

where (x, y) are the coordinates of mid-point of line segment joining points (x₁, y₁) and (x₂, y₂) .

\mathfrak{\purple{\underline{Solution:-}}}

↝Let, diagonals AC and BD of square ABCD bisect each other at a point O with coordinates (m, n).

Point O (m, n) bisect Diagonal BD .

By Mid-point formula

 :\implies\sf{(m\;,\;n)=(\dfrac{(2)+(-6)}{2}\;,\;\dfrac{(-3)+(5)}{2})}

:\implies\sf{(m\;,\;n)=(\dfrac{-4}{2}\;,\;\dfrac{2}{2})}

:\implies\underline{\underline{\orange{\sf{(m\;,\;n)=(-2\;,\;1)}}}}

Point O (m, n) bisects Diagonal BC .

Now,

:\implies\sf{(m\;,n)=(\dfrac{(2) + (x) }{2} \;,\;\dfrac{(5)+(y)}{2})}

Substituting values of (m, n) :

:\implies\sf{(-2\;,1)=(\dfrac{(2) + (x) }{2} \;,\;\dfrac{(5)+(y)}{2})}

:\implies\sf{-2=\dfrac{(2) + (x) }{2} \;,\;1=\dfrac{(5)+(y)}

:\implies\sf{2+x=-4\;,\;\ 5+y=2}⟹2+x=−4, 5+y=2

:\implies\sf{x=-4-2\;,\;\ y=2-5}⟹x=−4−2, y=2−5

:\implies \sf{x=-6\;,\;\ y=-3}

Hence,

\underline{\underline{\pink{Coordinates \:of \:fourth \:vertex \:are \: (-6, -3).}}}

________________________________

Similar questions