Math, asked by kerthika, 10 months ago

(a^2+ac +c^2):(a^2-ac+c^2)=(b^2+bd+d^2):(b^2-bd+d^2) prove that if a:b::c:d​

Answers

Answered by TakenName
8

Answer:

Did you mean a:b=c:d?

Step-by-step explanation:

Identity

( A ± B ){ A^2 - (±AB) + B^2 } = A^3 ± B^3

(a^2+ac +c^2):(a^2-ac+c^2)=a^3-c^3:a^3+c^3

(b^2+bd+d^2):(b^2-bd+d^2)=b^3-d^3:b^3+b^3

a^3-c^3:a^3+c^3=b^3-d^3:b^3+d^3\\(a^3+c^3)(b^3-d^3)=(a^3-c^3)(b^3+d^3)\\

a^3b^3-a^3d^3+b^3c^3-c^3d^3=a^3b^3+a^3d^3-b^3c^3-c^3d^3\\(a^3b^3-a^3b^3)+(b^3c^3+b^3c^3)=(a^3d^3+a^3d^3)-(c^3d^3+c^3d^3)\\2a^3d^3=2b^3c^3\\a^3d^3=b^3c^3\\ad=bc

ad=bc

In a:b=c:d\\,

ad=bc

a:b=c:d

Similar questions