a^2 + b^2 - c^2 + 2ab
Answers
Answer:
ok but mark
Step-by-step explanation:
FORMULAE OF DIFFERENTIATION ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
→\tt{\dfrac{d}{dx} x^{n} = nx^{n-1}}
dx
d
x
n
=nx
n−1
→\tt{\dfrac{d}{dx} (constant) = 0} ⠀
dx
d
(constant)=0⠀
→ \tt{\dfrac{d}{dx} kf(x) = k. \dfrac{d}{dx} f(x)}
dx
d
kf(x)=k.
dx
d
f(x)
→ \tt{\dfrac{d}{dx} (u+v) = \dfrac{du}{dx} + \dfrac{dv}{dx} }
dx
d
(u+v)=
dx
du
+
dx
dv
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
→\tt{\dfrac{d}{dx} (u-v) = \dfrac{du}{dx} - \dfrac{dv}{dx}}
dx
d
(u−v)=
dx
du
−
dx
dv
⠀⠀⠀⠀⠀⠀⠀⠀⠀
→ \tt{\dfrac{d}{dx} (u.v) = u \dfrac{dv}{dx} + v \dfrac{du}{dx}}
dx
d
(u.v)=u
dx
dv
+v
dx
du
⠀⠀⠀⠀⠀⠀
→ \tt{\dfrac{d}{dx} (\dfrac{u}{v}) = \dfrac{v \dfrac{du}{dx} - u \dfrac{dv}{dx}}{v^2}}
dx
d
(
v
u
)=
v
2
v
dx
du
−u
dx
dv
→\tt{\dfrac{d}{dx} (Cos x) = - sin x}
dx
d
(Cosx)=−sinx
→\tt{\dfrac{d}{dx} (Sin x) = Cos x}
dx
d
(Sinx)=Cosx
→\tt{\dfrac{d}{dx} (Tan x) = Sec^2 x}
dx
d
(Tanx)=Sec
2
x
→\tt{\dfrac{d}{dx} (Cot x) = - Cosec^2 x}
dx
d
(Cotx)=−Cosec
2
x
→\tt{\dfrac{d}{dx} (Sec x) = Sec x. Tan x}
dx
d
(Secx)=Secx.Tanx
→\tt{\dfrac{d}{dx} (Cosec x) = - Cosec x. Cot x}
dx
d
(Cosecx)=−Cosecx.Cotx ⠀
→\tt{\dfrac{d}{dx} log_{e}(x) = \dfrac{1}{x}}
dx
d
log
e
(x)=
x
1
→ \tt{\dfrac{d}{dx} e^x = e^x}
dx
d
e
x
=e
x
⠀⠀⠀⠀⠀
→\tt{\dfrac{d}{dx} a^x = a^{x} . log_{e}{a}}
dx
d
a
x
=a
x
.log
e