Math, asked by fayadkhan70, 5 months ago

(a^2+b^2+c^2-ab-bc-ca) what's the formula of this ?​

Answers

Answered by Anonymous
4

 \star\underline{\mathtt\orange{⫷❥Q} \mathfrak\blue{u }\mathfrak\blue{E} \mathbb\purple{ s}\mathtt\orange{T} \mathbb\pink{iOn⫸}}\star\:

(a^2+b^2+c^2-ab-bc-ca) what's the formula of this ?

 { \color{aqua}{ \underbrace{ \underline{ \color{lime}{ \mathbb{ SoLuTiOn }}}}}}

formula =  \\

 {a}^{3}  +  {b}^{3}  +  {c}^{3}  - 3abc = (a + b + c)( {a}^{2}  +  {b}^{2}  +  {c}^{2}  - ab - bc - ca

 \blue{\boxed{\blue{ \bold{\fcolorbox{red}{black}{\green{Hope\:It\:Helps}}}}}}

 {\mathbb{\colorbox {orange} {\boxed{\boxed{\boxed{\boxed{\boxed{\colorbox {lime} {\boxed{\boxed{\boxed{\boxed{\boxed{\colorbox {aqua} {@suraj5069}}}}}}}}}}}}}}}

Answered by yinc12
1

Answer:

This is a standard identity

a^2+b^2+c^2 -ab-bc-ca

Multiplying and diving by 2

\frac{1} {2} \times 2a^2+2b^2+2c^2 -2ab-2bc-2ca

= \frac{1} {2} \times (a^2+b^2-2ab) + (b^2+c^2-2bc) + (c^2+a^2-2ac)\\= \frac{1} {2} [ (a-b)^2 + (b-c)^2 + (c-a)^2 ]

Hope that helps

Please mark as BRAINLIEST

Similar questions