a^2/b+c=b^2/c+a=c^2/a+b=1 then show that (1/1+a)+(1/1+b)+(1/1+c)=1
Answers
Answered by
1
Given that .
From the above equalities,
[tex] \frac{a^2}{b+c} =1\\
a^2=b+c\\
a^2+a=a+b+c\\
a(1+a)=a+b+c\\
a=\frac{a+b+c}{1+a} ..................(1) [/tex]
Similarly,
[tex] b=\frac{a+b+c}{1+b}.....................(2)\\
c=\frac{a+b+c}{1+c}......................(3) [/tex]
Now add equations, (1)+(2)+(3)
[tex] a+b+c=\frac{a+b+c}{1+a}+\frac{a+b+c}{1+b}+\frac{a+b+c}{1+c}\\
LHS=\frac{a+b+c}{1+a}+\frac{a+b+c}{1+b}+\frac{a+b+c}{1+c}=a+b+c\\
LHS=\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}=1=RHS [/tex]
The proof is complete.
Similar questions
Math,
7 months ago
Math,
7 months ago
English,
1 year ago
Math,
1 year ago
Social Sciences,
1 year ago