Math, asked by krmanvishwakarma6y, 10 months ago

a^2=b+c, b^2=c+a, c2=a+b then the value of 1÷a+1 + 1÷b+1 + 1÷c+1 equal to​

Answers

Answered by aryan073
0

Step-by-step explanation:

\huge\underline\mathbb\red{AnSwEr}

a²=b+c

b²=c+a

c²=a+b

1/a+1 +1/b+1 +1/c+1

1/rootb+c+1 +1/rootc+a+1 +1/roota+b+1

rootc+a+1+rootb+c+1/rootb(rootc+a+1)+c(root6+a+1)

+1(rootc+a+1)+1/roota+b+1

 \frac{ \sqrt{c} + a + 1 +  \sqrt{b} + c + 1  }{ \sqrt{bc}  +  a \sqrt{b}  +  \sqrt{b}   + c \sqrt{c} + ca +c   }  \times  \frac{1}{c + 1}

solve this u get urs answer

Similar questions