Math, asked by alekhyagudala5, 8 months ago

a^2+c^2-4a-4c-ac+16=0,then what is value of(a+c)^2?

Answers

Answered by pulakmath007
6

\displaystyle\huge\red{\underline{\underline{Solution}}}

GIVEN

 \sf{  {a}^{2}  +  {c}^{2} - 4 a- 4c -  ac+ 16 \:  = 0 \: }

TO DETERMINE

 \sf{  {(a + c)}^{2} \: }

CALCULATION

 \sf{  {a}^{2}  +  {c}^{2} - 4 a- 4c -  ac+ 16 \:  = 0 \: }

Multiplying both sides by 2 we get

 \sf{  2{a}^{2}  + 2 {c}^{2} - 8a- 8c -  2ac+ 32 = 0 \:  \: }

 \implies \:  \sf{ ( {a}^{2}  - 2ac +  {c}^{2} ) + ( {a}^{2}  +  {c}^{2} - 8 a- 8c -  2ac+ 16 \: ) = 0 \: }

 \implies \:  \sf{ {(a - c)}^{2} +  \bigg[ {a}^{2}  - 8a + 16 \bigg] +\bigg[ {c}^{2}  - 8c + 16 \bigg]   = 0 \: }

 \implies \:  \sf{ {(a - c)}^{2} +  {(a - 4)}^{2}   +{(c - 4)}^{2} = 0 \: }

Now if sum of the squares of three Real Numbers are zero then they are separately zero

Therefore

 \sf{a - c = 0 \:  \:  \: and \:  \: a - 4 = 0 \:  \:  \:  \:  \: and \:  \:  \: c - 4 = 0 \:  \: }

Now

 \sf{a - c = 0 \:  \: \: } \:  \: gives \:  \:  \: a = c

 \sf{a - 4 = 0 \:  \:  \: } \:  \:  \: gives \:  \:  \: a = 4

 \sf{ c - 4 = 0 \:  \: } \:  \: gives \:  \:  \:  \: c = 4

Above three together gives

 \sf{a  = c = 4 \: \: }

Hence

 \sf{  {(a + c)}^{2} \: }

 =  \sf{  {(4 + 4)}^{2} \: }

  = \sf{  {(8)}^{2} \: }

 =  \sf{ 64\: }

RESULT

 \boxed{  \:  \: \sf{  {(a + c)}^{2} \: } = 64 \:  \:  \: }

━━━━━━━━━━━━━━━━

LEARN MORE FROM BRAINLY

Find the remainder when

x³-ax²+6x-a is divided by x - a

https://brainly.in/question/5714646

Similar questions