Physics, asked by anshikanigam19jan200, 9 months ago

A 2 cm long object is placed at a clistance of 100 cm
from a convex mirror of radius of curvature 50 cm.
Find the position, nature and length of the image.
Ans.20 cm behind the mirror, virtual, 0.4 cm.​

Answers

Answered by Cosmique
3

Given :

\bullet\;\sf{height\:of\:object\:,\:h_o=2\;cm}

\bullet\;\sf{position\:of\:object\:,u\;=-100\;cm}

\bullet\;\sf{Radius\:of\:curvature\:of\:convex\:mirror\;,R=50\;cm}

To find :

\bullet\;\sf{position\:of\:image\:,v\;=?}

\bullet\;\sf{nature\:of\:image}

\bullet\;\sf{height\:of\:image,\;h_i\;=?}

Formula required :

  • Relation between Radius of curvature and focal length of Mirror

\red{\bigstar}\boxed{\sf{f=\dfrac{R}{2}}}

  • Formula for magnification of mirror

\red{\bigstar}\boxed{\sf{m=\dfrac{-v}{u}=\dfrac{h_i}{h_o}}}

  • Mirror formula

\red{\bigstar}\boxed{\sf{\dfrac{1}{f}=\dfrac{1}{v}+\dfrac{1}{u}}}

[ where m is magnification ; v is position of image ; u is position of object ; f is focal length of mirror ; R is radius of curvature of convex mirror ; h\sf{_i} is height of image ; h\sf{ _o} is height of object ]

Solution :

Using relation between R and f

\implies\sf{f=\dfrac{R}{2}}

\implies\sf{f=\dfrac{50}{2}}

\underline{\underline{\implies\sf{\red{f=25\;cm}}}}

Using mirror formula

\implies\sf{\dfrac{1}{f}=\dfrac{1}{v}+\dfrac{1}{u}}

\implies\sf{\dfrac{1}{25}=\dfrac{1}{v}+\dfrac{1}{(-100)}}

\implies\sf{\dfrac{1}{v}=\dfrac{1}{25}+\dfrac{1}{100}}

\implies\sf{\dfrac{1}{v}=\dfrac{4+1}{100}}

\underline{\underline{\implies\sf{\red{v=20\;cm}}}}

Using formula for magnification

\implies\sf{m=\dfrac{-v}{u}=\dfrac{h_i}{h_o}}

\implies\sf{\dfrac{-v}{u}=\dfrac{h_i}{h_o}}

\implies\sf{\dfrac{-(20)}{(-100)}=\dfrac{h_i}{(2)}}

\underline{\underline{\implies\sf{\red{h_i=0.4\;cm}}}}

Therefore,

  • position of image is 20 cm behind the convex mirror.
  • nature of image is virtual and erect.
  • Height of image is 0.4 cm.
Similar questions