Math, asked by shivvv42, 7 months ago

a= 2 d= 8
S_{n} = 90
n=? an=?​

Answers

Answered by CrEEpycAmp
33

{\fbox{\boxed {\huge{\rm{\red{Answer}}}}}}

Step-by-step explanation:

 \implies \:  \large\mathbb{  S_{n} =  \frac{n}{2} (2a + (n - 1)d)}

 \implies \:  \large\mathbb{ S_{n} =  \frac{n}{2}( (2) + (n - 1)8)}

 \implies \:  \large\mathbb{90 =  \frac{n}{2}(4 + 8n - 8)}

 \implies \:  \large\mathbb{90 =  \frac{n}{2} (8n - 4)}

 \implies \:  \large\mathbb{90 =  \frac{n}{ \cancel2} \times \cancel{4}(2n - 1)  }

 \implies \:  \large\mathbb{  \frac{ \cancel{90}}{ \cancel{2}} =  {2n}^{2}  - n }

 \implies \:  \large\mathbb{45 =  {2n}^{2}  - n}

 \implies \:  \large\mathbb{ {2n}^{2}  - n - 45 = 0}

 \implies  \:  \large\mathbb{  \underline{{2n}^{2}  - 10n} +  \underline{9n - 45 }= 0}

 \implies \:  \large\mathbb{2n(n - 5) + 9(n - 5) = 0}

 \implies \:  \large\mathbb{(n - 5) \:  \: (2n + 9) = 0}

 \implies \:   \large\fbox\mathbb{n = 5} \:  \:  \fbox \mathbb{n =  \frac{- 9}{2} }

  \large\bold{Here, \: n =  \frac{ - 9}{2}  \:  \: is \: not \: possible .}

 \large\mathtt{n = 5}

 \implies \: \large \mathbb{ a_{n} = a + (n - 1)8}

 \implies \:  \large\mathbb{ a_{5} = 2 + (5 - 1)8}

 \implies \: \large \mathbb{ = 2 + (4)8}

 \implies \: =   \large\mathbb{2 + 32}

 \implies \:     \large \fbox\bold{ a_{n} =  34}

{\boxed{\huge{\red{\mathbb{BeBrainly...! }}}}}

Answered by Bᴇʏᴏɴᴅᴇʀ
26

ANSWER:-

Given:-

a= 2 \\ d= 8

S_{n} = 90

n=? \\ a&{n}=?

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

SOLUTION:-

\longrightarrow \: \large{ S_{n} = \frac{n}{2} (2a + (n - 1)d)}

\longrightarrow \: \large{ S_{n} = \frac{n}{2}( (2) + (n - 1)8)}

\longrightarrow \: \large{90 = \frac{n}{2}(4 + 8n - 8)}

\longrightarrow \: \large{90 = \frac{n}{2} (8n - 4)}

\longrightarrow \: \large{90 = \frac{n}{ \cancel2} \times \cancel{4}(2n - 1) }

\longrightarrow \: \large{ \frac{ \cancel{90}}{ \cancel{2}} = {2n}^{2} - n }

\longrightarrow \: \large{45 = {2n}^{2} - n}

\longrightarrow \: \large{ {2n}^{2} - n - 45 = 0}

\longrightarrow \: \large{ \underline{{2n}^{2} - 10n} + \underline{9n - 45 }= 0}

\longrightarrow \: \large{2n(n - 5) + 9(n - 5) = 0}

\longrightarrow \: \large{(n - 5) \: \: (2n + 9) = 0}

\implies \: \large \bf{n = 5} \: \:  {n = \frac{- 9}{2} }

\large \bf{n = \frac{ - 9}{2} \: \: is \: not \: possible .}

Therefore,

\large \bf{n = 5}

\longrightarrow \: \large { a_{n} = a + (n - 1)8}

\longrightarrow \: \large{ a_{5} = 2 + (5 - 1)8}

\longrightarrow \: \large { = 2 + (4)8}

\longrightarrow \: = \large{2 + 32}

\implies \: \large \bf{ a_{n} = 34}

\\ \\ Hence, \bf{a_{n}=34}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Similar questions