Physics, asked by arpitmishra73, 5 hours ago

A = 2 î+ root7 j and B =5î -√7j -3k then find the vector whose magnitude is equal to A.B and Parallel to B-A​

Answers

Answered by pcplionelmessi
6

Answer:

Let `bar a=2hati-qhatj+3hatk and barb=4hati-5hatj+6hatk`

Since, `bara and barb` are collinear.

∴ there exists a scalar t such that `barb = t bara `.

∴ `4hati-5hatj+6hatk=t(2hati-qhatj+3hatk)=2thati-qthatj+3thatk`

∴ By equality of vectors, we get

4 = 2t, - 5 = - qt, 6 = 3t

∵ 4 = 2t and 6 = 3t ∴t = 2

- 5 =- q(2)

–5 = – 2q

∴ 5 = 2q

q = 5/2

Answered by talasilavijaya
2

Answer:

The vector whose magnitude is equal to \vec A.\vec B and parallel to |\vec B-\vec A| is \dfrac{3}{\sqrt{46}}\hat i-\dfrac{2\sqrt{7}}{\sqrt{46}}\hat j-\dfrac{3}{\sqrt{46}}\hat k    

Explanation:

Given the vectors, \vec A = 2 \hat i+ \sqrt{7} \hat j and \vec B = 5 \hat i-\sqrt{7} \hat j-3\hat k

Product of two vectors \vec A.\vec B is

\vec A.\vec B = (2 \hat i+ \sqrt{7} \hat j) (5 \hat i-\sqrt{7} \hat j-3\hat k)

       = (2\times5)+ (\sqrt{7} \times-\sqrt{7})    

       = 10- 7=3units

Therefore, the magnitude of  \vec A.\vec B is 3units.

Then the difference between the vectors, \vec B-\vec A is

\vec B-\vec A =(5 \hat i-\sqrt{7} \hat j-3\hat k)- (2 \hat i+ \sqrt{7} \hat j)

          = (5 \hat i-2 \hat i )+(-\sqrt{7} \hat j-\sqrt{7} \hat j)-3\hat k

          =3 \hat i -2\sqrt{7}\hat j -3\hat k

And the magnitude of the vector |\vec B-\vec A| is

\big|3 \hat i -2\sqrt{7}\hat j -3\hat k\big|=\sqrt{3^{2}+ (-2\sqrt{7})^{2}+(-3)^{2}}

                          =\sqrt{9+28+9}=\sqrt{46}units

Given the vector that is parallel to 3 \hat i -2\sqrt{7}\hat j -3\hat k is equal to 3 units.

A unit vector parallel to another vector is given by  

\hat a=\dfrac{ \vec a }{|\vec a|}

Thus, the vector parallel to 3 \hat i -2\sqrt{7}\hat j -3\hat k whose magnitude is 3 units is given by

3\hat a=\dfrac{3 \hat i -2\sqrt{7}\hat j -3\hat k}{|3 \hat i -2\sqrt{7}\hat j -3\hat k|}

    =\dfrac{3 \hat i -2\sqrt{7}\hat j -3\hat k}{\sqrt{46}}      

    =\dfrac{3}{\sqrt{46}}\hat i-\dfrac{2\sqrt{7}}{\sqrt{46}}\hat j-\dfrac{3}{\sqrt{46}}\hat k

Therefore, the vector whose magnitude is equal to \vec A.\vec B and parallel to |\vec B-\vec A| is \dfrac{3}{\sqrt{46}}\hat i-\dfrac{2\sqrt{7}}{\sqrt{46}}\hat j-\dfrac{3}{\sqrt{46}}\hat k    

For more info:

https://brainly.in/question/9320854

https://brainly.in/question/2717347

Similar questions