Math, asked by SharmaShivam, 11 months ago

(a+2) sinα +(2a-1) cosα = (2a+1) if tanα =

(a) 3/4
(b) 4/3
(c) (2a)/(a²+1)
(d) (2a)/(a²-1)

Answers

Answered by amitkumar44481
63

AnsWer :

(b) and (d)

Solution :

We have,

 \tt \dagger \:  \: ( \alpha  + 2) \sin \alpha  + (2 \alpha  - 1) \cos \alpha  = (2 \alpha  + 1)

Let's tan alpha be X.

Now,

Dividing Cos alpha,We get.

 \tt\mapsto\frac{( \alpha  + 2) \sin\alpha}{\cos} +   \frac{ (2 \alpha  - 1)\cos\alpha }{\cos\alpha }= \frac{(2 \alpha  + 1)}{\cos\alpha }.

Now, Taking alpha term and x term one side and Simplify.

\rule{90}1

 \tt  \mapsto(3x - 4)(1 -  { \alpha }^{2} )( x + 2 \alpha ) = 0.

 \tt\mapsto \: x =  \frac{4}{3}  \:  \:  \:  \:  \: or \:  \:  \:  \frac{ - 2 \alpha }{1 -  {\alpha  }^{2} }

 \tt \mapsto x =  \frac{4}{3}  \:  \:  \:  \: or \:  \:  \:  \:  \:  \frac{2 \alpha }{ { \alpha }^{2} - 1 }

\rule{200}1

\boxed{\begin{minipage}{6 cm}Fundamental Trigonometric Identities \\ \\$ \sin^2\theta + \cos^2\theta=1 \\ \\1+\tan^2\theta = \sec^2\theta \\ \\1 +\cot^2\theta = \text{cosec}^2 \, \theta$\end{minipage}}

Note : Whole solution provide above.

Attachments:
Answered by Rohit18Bhadauria
9

Given:

(a+2)sinα+(2a-1)cosα= 2a+1

To Find:

Value of tanα

Solution:

We know that,

\leadsto\bf{tan\theta=\dfrac{sin\theta}{cos\theta}}

Now,

It is given that,

\longrightarrow\mathrm{(a+2)sin\alpha+(2a-1)cos\alpha=2a+1}

\longrightarrow\mathrm{asin\alpha+2sin\alpha+2acos\alpha-cos\alpha=2a+1}

\longrightarrow\mathrm{asin\alpha+2acos\alpha+2sin\alpha-cos\alpha=2a+1}

\longrightarrow\mathrm{a(sin\alpha+2cos\alpha)+2sin\alpha-cos\alpha=2a+1}

On comparing coefficient of 'a' and constant term of both the sides, we get

\longrightarrow\mathrm{sin\alpha+2cos\alpha=2}------(1)

\longrightarrow\mathrm{2sin\alpha-cos\alpha=1}------(2)

On multiplying eqⁿ (2) by 2, we get

\longrightarrow\mathrm{4sin\alpha-2cos\alpha=2}------(3)

On adding (1) and (3), we get

\longrightarrow\mathrm{sin\alpha+2cos\alpha+4sin\alpha-2cos\alpha=2+2}

\longrightarrow\mathrm{sin\alpha+4sin\alpha+2cos\alpha-2cos\alpha=4}

\longrightarrow\mathrm{5sin\alpha=4}

\longrightarrow\mathrm{sin\alpha=\dfrac{4}{5}}

On putting value of sinα in (1), we get

\longrightarrow\mathrm{\dfrac{4}{5}+2cos\alpha=2}

\longrightarrow\mathrm{2cos\alpha=2-\dfrac{4}{5}}

\longrightarrow\mathrm{2cos\alpha=\dfrac{10-4}{5}}

\longrightarrow\mathrm{\cancel{2}cos\alpha=\dfrac{\cancel{6}}{5}}

\longrightarrow\mathrm{cos\alpha=\dfrac{3}{5}}

Now,

\longrightarrow\mathrm{tan\alpha=\dfrac{sin\alpha}{cos\alpha}}

\longrightarrow\mathrm{tan\alpha=\dfrac{\dfrac{4}{\cancel{5}}}{\dfrac{3}{\cancel{5}}}}

\longrightarrow\mathrm{\pink{tan\alpha=\dfrac{4}{3}}}

Hence, the correct answer is option (b).

Similar questions