Math, asked by sneha519, 10 months ago

a=2 sum of first 4 terms is equal to one fourth of the sum of next 5 terms find the sym of first 30 terms​

Answers

Answered by ihrishi
2

Step-by-step explanation:

Given:

First term a = 2

Sum of next 5 terms will be equal to the difference between sum of 9 terms and sum of four terms.

Thus according to the given condition, we have:

S_4 =  \frac{1}{4} (S_9 - S_4) \\ S_4 =  \frac{1}{4}   [ \frac{9}{2} \{2 \times 2 + (9 - 1)d \} - \frac{4}{2} \{2 \times 2 + (4 - 1)d \}]  \\  =  \frac{1}{4}   [ \frac{9}{2} \{4 + 8d \} - 2 \{4 +3d \}]  \\ =  \frac{1}{4}   [ 18 + 36d - 8  - 6d ] \\ S_4 = \frac{1}{4}   [10 + 30d]   \\ \therefore \:  \frac{4}{2} \{2 \times 2 + (4 - 1)d \}= \frac{1}{4}   [10 + 30d] \\  2 \{4 + 3d \}= \frac{1}{4}   [10 + 30d] \\ 2 \times 4 \{4 + 3d \}=   10 + 30d \\ 8 \{4 + 3d \}=   10 + 30d \\ 32 + 24d =   10 + 30d \\ 32 - 10 = 30d - 24d \\ 22 = 6d  \:  \:  \implies \: d =  \frac{22}{6}  \\ \implies \: d =  \frac{11}{3}  \\ hence \\  S_{30}=   \frac{30}{2} \{2 \times 2 + (30 - 1) \times  \frac{11}{3} \} \\ S_{30}=   15\{4+ 29 \times  \frac{11}{3} \}\\ S_{30}=   15\{4+  \frac{319}{3} \} \\ S_{30}=   15\{\frac{3 \times 4 + 319}{3} \} \\  S_{30}=   15\{\frac{12 + 319}{3} \} \\ S_{30}=   15\{\frac{331}{3} \} \\ S_{30}=   5 \times 331 \\ S_{30}=  1655 \\

Similar questions