Math, asked by braj5323, 6 months ago

a=2+ V3, then find the value of (a-1/a)​

Answers

Answered by amankumaraman11
12

Given,

 \bf{}a = 2 +  \sqrt{3}

To Find : a - 1/a = ?

@---@ SOLUTION @---@

Here,

  \rm{}a = 2 +  \sqrt{3}  \\

Then,

 \rm\frac{1}{a}  =  \frac{1}{2 +  \sqrt{3} }  \\  \\   \to\frac{1}{2 +  \sqrt{3} }  \times  \frac{2 -  \sqrt{3} }{2 -  \sqrt{3} }  \\  \\   \to \frac{1(2 -  \sqrt{3} )}{ {(2)}^{2} -  {( \sqrt{3} )}^{2}  }  \\  \\  \to \frac{2 -  \sqrt{3} }{4 - 3}  =  \frac{2 -  \sqrt{3} }{1}  \\  \\  \tt \implies \frac{1}{a}  = 2 -  \sqrt{3}

Now,

 \bf{}a -  \dfrac{1}{a}  = 2 +  \sqrt{3}  - (2 -  \sqrt{3} ) \\  \\   \tt{}a -  \dfrac{1}{a}  \:  \:  \to \:  \: 2 +  \sqrt{3}  - 2 +  \sqrt{3}  \\ \\   \tt{}a -  \dfrac{1}{a}  \:  \:  \to \:  \:  \:  \red{2 \sqrt{3} }

Thus,

  • Required value of a - 1/a = 2√3
Similar questions