Physics, asked by radhikarajpoot55, 9 months ago

A 20 cm tall object is placed perpendicular to the principal axis of a convex lens of focal length 25 cm . The distance of the object from the lens is 10 cm. Find the position , nature and size of the image forward .

Answers

Answered by DrNykterstein
11

Given :-

\quad Height of object, h = +20 cm

\quad Focal length of convex lens, f = +25 cm

\quadDistance of object from the lens, u = -10 cm

 \\

To Find :-

\quad Position, Nature and size of the image formed.

 \\

Solution :-

 \setlength{ \unitlength}{1cm} \thicklines \begin{picture}(10,10) \put(0,2){ \line(1,0){8}}  \put(4,2){ \circle*{0.1}} \qbezier(4.1,4)(5,2)(4.1, 0)  \qbezier(4.1,4)(3.2,2)(4.1,0) \put(4,4){ \line(0, - 1){4}} \put(2,1.5){ $\sf f_{1} $} \put(6,1.5){ $\sf f_{2} $} \put(2,2){ \circle*{0.1}} \put(6,2){ \circle*{0.1}} \put(2.5,2){ \vector(0,1){1}} \put(1.5,2.3){ \sf 20 cm} \put(2.5, 2.2){ \vector(1, 0){1.5}}\put(3,2.2){ \vector( - 1,0){0.5}}  \put(2.8,2.3){ \sf 10 cm} \end{picture}

 \\

We know,

 \qquad \boxed{\dfrac{1}{f} = \dfrac{1}{v} - \dfrac{1}{u} }

 \\

\sf \Rightarrow \quad  \dfrac{1}{25}  =   \frac{1}{v} -  \bigg(  -  \frac{1}{10}   \bigg) \\  \\ \sf \Rightarrow \quad  \frac{1}{25}  =  \frac{1}{v}  +  \frac{1}{10}  \\  \\ \sf \Rightarrow \quad  \frac{1}{v}  =   \frac{1}{25} -  \frac{1}{10}   \\  \\ \sf \Rightarrow \quad  \frac{1}{v}  =   - \frac{3}{50}

Hence, v = -50/3 cm or -16.67 cm

 \\

Properties of image :-

\quad Nature :- Virtual and Erect

\quad Size :- Magnified

\quad Position :- 16.67 cm from the lens

 \\ \\

Some Information :-

\quad Focal length of convex lens is positive while focal length of concave lens is negative.

\quad If the object is between the focal point and pole then the image formed will be Magnified, virtual and erect and the position of image will be behind the object.

Similar questions