Math, asked by 8709177878, 8 months ago

a) 24 cm
If perimeter of a square is equal to the circunference of a circle, then its ratio of areas is
a) : 2
b) 1:4
c) 1:3
d) 1:1​

Answers

Answered by Anonymous
105

\underline{\underline{\pink{\sf Given:}}}

  • Perimeter of a square is equal to the circumference of Circle

\underline{\underline{\pink{\sf Find:}}}

  • Ratio of Areas of Circle and Square

\underline{\underline{\pink{\sf Given:}}}

Let, the radius of circle = r

  \sf\therefore \underline{  so, we \: know \: that}

 \sf \to circumfrence = 2 \pi r

________________

 \sf \leadsto perimeter \: of \: square = 4a

Now, it is given that the circumference of Circle is same as Perimeter of Square.

So,

 \sf \to perimeter \: of \: square = 4a

 \sf  : \implies 2 \pi r= 4a

 \sf  : \implies a = \dfrac{2 \pi r}{4}

 \sf  : \implies a = \dfrac{\pi r}{2}

Hence, side of square will be \sf \dfrac{\pi r}{2}

____________

Now,

 \hookrightarrow\sf Ratio =  \dfrac{area \: of \: circle}{area \: of \: square}

 \hookrightarrow\sf Ratio =  \dfrac{  \pi {r}^{2} }{{(side)}^{2} }

where,

  • Radius = r
  • π = 22/7
  • side = \sf \dfrac{\pi r}{2}

So,

 \hookrightarrow\sf Ratio =  \dfrac{  \pi {r}^{2} }{{(side)}^{2}}

 \hookrightarrow\sf Ratio =  \dfrac{  \pi {r}^{2} }{{(\dfrac{ \pi r}{2} )}^{2}}

 \hookrightarrow\sf Ratio =  \dfrac{  \pi {r}^{2} }{{\dfrac{ {\pi}^{2}{r}^{2}}{4}}}

 \hookrightarrow\sf Ratio = \pi  {r}^{2}  \times  \dfrac{4}{ {\pi}^{2} {r}^{2}  }

 \hookrightarrow\sf Ratio = 1 \times  \dfrac{4}{\pi}

 \hookrightarrow\sf Ratio = \dfrac{4}{\pi}

 \hookrightarrow\sf Ratio = \dfrac{4}{ \dfrac{22}{7} }

 \hookrightarrow\sf Ratio =4 \times  \dfrac{7}{22}

 \hookrightarrow\sf Ratio =2 \times  \dfrac{7}{11}

 \hookrightarrow\sf Ratio = \dfrac{14}{11}

 \hookrightarrow\sf Ratio = 14 : 11

_________________

Hence, the Ratio of Area of square and Circle will be 14:11

Similar questions