a+2b+c=0 show that a^3+8b^3+c^3=6abc
Answers
Answered by
14
We know that,
If x+y+z = 0
Then x^3 +y^3+z^3 = 3xyz
By using this identity,
(a)^3 + (2b)^3 + (c)^3 = 3 (a) (2b)(c)
=> a^3 + 8b^3 + c^3 = 6abc
Hence Proved......
If x+y+z = 0
Then x^3 +y^3+z^3 = 3xyz
By using this identity,
(a)^3 + (2b)^3 + (c)^3 = 3 (a) (2b)(c)
=> a^3 + 8b^3 + c^3 = 6abc
Hence Proved......
Answered by
8
Hope u like my process..
-------------------------------------
Here we go,
Formula to be used:
–––––––––––––––
( x + y) ³ = x³ + y³ +3xy(x +y)
~~~~~~~~~~~~~~~~~~~~~~~~
So,, a + 2b +c =0
or, a + 2b = - c
Cubing both sides we get,
=======================
(a + 2b) ³ = (-c) ³
or, (a)³ + (2b)³ +3.a.2b.(a +2b) = - c³
or, a³+8b³+6ab×(-c) 9+c³=0__(since a+2b =-c)
or, a³ + 8b³ +c³ - 6abc =0
or, a³ + 8b³ + c³ =6abc __[PROVED]
______________________________
Hope u got it
Proud to help you.
-------------------------------------
Here we go,
Formula to be used:
–––––––––––––––
( x + y) ³ = x³ + y³ +3xy(x +y)
~~~~~~~~~~~~~~~~~~~~~~~~
So,, a + 2b +c =0
or, a + 2b = - c
Cubing both sides we get,
=======================
(a + 2b) ³ = (-c) ³
or, (a)³ + (2b)³ +3.a.2b.(a +2b) = - c³
or, a³+8b³+6ab×(-c) 9+c³=0__(since a+2b =-c)
or, a³ + 8b³ +c³ - 6abc =0
or, a³ + 8b³ + c³ =6abc __[PROVED]
______________________________
Hope u got it
Proud to help you.
Similar questions