Physics, asked by mckennyronald965, 1 month ago

A= 2i+3j
B= -i+2j
Find the angle between A and B vectors

Answers

Answered by Anonymous
43

Topic :- Vectors

\maltese \: \underline{\underline{\textsf{\textbf{AnsWer :}}}}\:\maltese

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\linethickness{3mm}\put(1,1){\line(1,0){6.8}}\end{picture}

Given;

\footnotesize\bullet\: \underline{\sf \overrightarrow{A} = 2 \hat{i} + 3\hat{j}} \\

\footnotesize\bullet\: \underline{\sf \overrightarrow{B} =  - \hat{i} + 2\hat{j}} \\

We need to find the angle between this two vectors i.e vector A and vector B.

\longrightarrow\:\sf \cos (\theta) =\dfrac{\overrightarrow{A}.\overrightarrow{B}}{AB} \\

\longrightarrow\:\sf \cos (\theta) =\dfrac{(2 \hat{i} + 3\hat{j}).( - \hat{i} + 2\hat{j})}{ \sqrt{ {2}^{2} +  {3}^{2}  }. \sqrt{ {1}^{2} +  {2}^{2}  }   } \\

\longrightarrow\:\sf \cos (\theta) =\dfrac{ - 2 + 6}{ \sqrt{ 4 + 9  }. \sqrt{ 1 + 4 }   } \\

\longrightarrow\:\sf \cos (\theta) =\dfrac{ 4}{ \sqrt{ 4 + 9  }. \sqrt{ 1 + 4 }   } \\

\longrightarrow\:\sf \cos (\theta) =\dfrac{ 4}{ \sqrt{ 13 }. \sqrt{ 5 }   } \\

\longrightarrow\:\sf \cos (\theta) =\dfrac{ 4}{ \sqrt{ 65 } } \\

\longrightarrow\: \underline{ \underline{\sf  (\theta) =\cos^{-1}\Bigg(\dfrac{ 4}{ \sqrt{ 65}}  \Bigg)}}

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\linethickness{3mm}\put(1,1){\line(1,0){6.8}}\end{picture}

Attachments:

TheValkyrie: Amazing!
Anonymous: Thäñk yoú! T.T
Answered by TheUnsungWarrior
2

Answer:

Angle, ∅ = cos⁻¹ 4/√65

Explanation:

Given;-

      A = 2i + 3j

      B = -i + 2j

Now. We know from dot product of vectors;-

         A.B = AB cos∅

So,  cos∅ = AB/ A.B

      cos∅ = ( 2i + 3j )( -i + 2j )/ √(2)² + (3)² . √1² + (2)²

      cos∅ = - 2 + 6/ √13 . √5

      cos∅ = 4 / √65

            ∅ = cos⁻¹ 4/√65

Therefore, the angle between A and B is ∅ = cos⁻¹ 4/√65

Hope it helps ;-))

Similar questions