Math, asked by Nishakankarwal3222, 9 months ago

A=[(3,-1),(1,2)], B=[3,1], C=[1,-2]. find matrix X such that AX=3B+2C

Answers

Answered by Swarup1998
6

Topic - Matrix

Given: A=[(3,\:-1),\:(1,\:2)], B=[3,\:1] and C=[1,\:-2]

To find: We have to find the matrix X such that AX=3B+2C

Solution:

Here, A=\begin{bmatrix}3&-1\\1&2\end{bmatrix},\:B=\begin{bmatrix}3\\1\end{bmatrix},\:C=\begin{bmatrix}1\\-2\end{bmatrix}

Let us take: X=\begin{bmatrix}x\\y\end{bmatrix}

Now, AX=3B+4C

\Rightarrow \begin{bmatrix}3&-1\\1&2\end{bmatrix}\begin{bmatrix}x\\y\end{bmatrix}=3\begin{bmatrix}3\\1\end{bmatrix}+2\begin{bmatrix}1\\-2\end{bmatrix}

\Rightarrow \begin{bmatrix}3x-y\\x+2y\end{bmatrix}=\begin{bmatrix}9\\3\end{bmatrix}+\begin{bmatrix}2\\-4\end{bmatrix}

\Rightarrow \begin{bmatrix}3x-y\\x+2y\end{bmatrix}=\begin{bmatrix}11\\-1\end{bmatrix}

Equating both sides, we get

\quad\quad 3x-y=11\quad.....(i)

\quad\quad x+2y=-1\quad.....(ii)

Multiplying (i) by 2 and adding with (ii), we get

\quad 6x-2y+x+2y=22-1

\Rightarrow 7x=21

\Rightarrow \bold{x=3}

Putting x=3 in (i), we get

\quad 9-y=11

\Rightarrow \bold{y=-2}

Answer: The matrix, X=\begin{bmatrix}3\\-2\end{bmatrix}.

Similar questions