Math, asked by shiva5542, 4 months ago

a^³+1/a^3 when a value of a =2+√3​

Answers

Answered by deveshreem
4

Answer:

answer is here ☺️☺️☺️☺️

Attachments:
Answered by xxmysteriousgirlxx46
34

Answer:

Question

✳️

a {}^{3}  +(  \frac{1}{a} ) {}^{3} when \: value \: of \: a \:  =  \: \\ 2 +  \sqrt{3}

Solution ⬇️

✍️ a=2+√3

✍️to find a³+1/a³

  • we can give the value 'a' to find a³ + 1/a³
  • first we have to find 1/a and then cube it

 =  > a = 2 + \sqrt{3}  \\ to \: find \:   = \frac{1}{a}  \\  =  >  \frac{1}{2 +  \sqrt{3} }  \\ rationalise \: denominator

 =  >  \frac{1}{2 +  \sqrt{3} }  \times  \frac{2 -  \sqrt{3} }{2 -  \sqrt{3} }  \\  =  >  \frac{2 -  \sqrt{3} }{4 - 3} ....((a - b)(a + b)) \\ or \:  \frac{2 -  \sqrt{3} }{1}  = 2  + \sqrt{3}

hence \: a = 2 +  \sqrt{3}   \: and \: \frac{1}{a}  = 2 -  \sqrt{3}

✍️ then cube it

 {a}^{3}  +(  \frac{1}{a}  ){}^{3}  \\  =  > (2 +  \sqrt{3} ) {}^{3}  + (2 -  \sqrt{3} ) {}^{3}  \\  =  > 2 {}^{3}  + ( \sqrt{3} ) {}^{3}  + 3 \:  \times  \: 2 \:  \sqrt{3} (2 +  \sqrt{3} ) \\  + 2 {}^{3}  -(  \sqrt{3} ) {}^{3}  - 3 \times 2 \times  \sqrt{3}  \\

((x + y){}^{3}  =  {x}^{3}  +  {y}^{3}  + 3xy(x + y) \: and \: (x - y) {}^{3}  = x {}^{3}  -  {y}^{3}  - 3xy(x - y)) \\ formulae

cancel + ( \sqrt{3} ) {}^{3}  \: and \:  - ( \sqrt{3} ) {}^{3}  \\  =  > 8 + 6 \sqrt{3} (2 +  \sqrt{3} ) + 8 - 6 \sqrt{3} (2 -  \sqrt{3} ) \\  =  > 16 + 12 \sqrt{3}  + 18 - 6\sqrt{3}  \\  =  > 16 + 18 + 18 \\  =  > 52

✍️ Therefore a³+1/a³ = 52

Step-by-step explanation:

hope you appreciate this ans

Similar questions