Math, asked by diksha8367, 9 months ago

A(-3,1),B(-6,-7),C(3,-9),D(6,-1) show that the following points taken in order form the vertices of a parallelogram​

Answers

Answered by TheValkyrie
34

Answer:

\Large{\underline{\underline{\bf{Given:}}}}

  • A (-3, 1)
  • B (-6, 7)
  • C (3, -9)
  • D (6, -1)

\Large{\underline{\underline{\bf{To\:Prove:}}}}

  • ABCD is a parallellogram

\Large{\underline{\underline{\bf{Solution:}}}}

→ Distance of AB

 AB=\sqrt{(x_2-x_1)^{2}+(y_2-y_1)^{2}  }

→ Substituting the datas we get,

 AB=\sqrt{(-6+3)^{2}+(-7-1)^{2}  }

AB=\sqrt{9+64}

AB = √73

→ Distance of BC

BC=\sqrt{(3+6)^{2}+(-9+7)^{2}  }

BC=\sqrt{81+4}

BC = √85

→ Distance of CD

CD=\sqrt{(6-3)^{2}+(-1+9)^{2}  }

CD=\sqrt{9+64}

CD = √73

→ Distance of AD

AD=\sqrt{(6+3)^{2}+(-1-1)^{2}  }

AD=\sqrt{81+4}

AD = √85

→ Here AB = CD and BC = AD.

→ Since opposite sides are equal, ABCD is a parallelogram.

Hence proved.

\Large{\underline{\underline{\bf{Notes:}}}}

→ The opposite sides of a parallelogram are equal and parallel to each other.

→ Opposite angles are equal in a parallelogram.

Answered by Ataraxia
19

Solution :-

Given :-

  • A = ( -3 , 1 )
  • B = ( -6 , -7 )
  • C = ( 3 , -9 )
  • D = ( 6 , -1 )

We need to prove that the following points are taken in order of the vertices of a parallelogram.

\bf\dag \boxed{\bf Distance \ formula - \sqrt{(x_2-x_1)^2+(y_2-y_1)^2} }

\bullet \sf \   AB = \sqrt{(-6+3^2)+(-7-1)^2} =\sqrt{9+64} =\sqrt{73}

\bullet\sf \ BC= \sqrt{(3-(-6)^2+(-9+7)^2} =\sqrt{81+4} =\sqrt{85}

\bullet\sf \ CD=\sqrt{(6-3)^2+(-1+9)^2}=\sqrt{9+64} =\sqrt{73}

\bullet\sf \ AD=\sqrt{(-1+3)^2+(6+3)^2} =\sqrt{4+81} =\sqrt{85}

AB = CD and BC = AD

In a parallelogram opposite sides are equal .

So the following points are taken in the order of the vertices of a parallelogram .

Similar questions