Math, asked by Abarajith, 1 year ago

A=3-2√2,find a²+1/a²

Answers

Answered by Ajay1291
2
heye dear here is your answer

A=3-2√2
formulae = a²+1/a²
put the value of A in equation

=) a²+1/a² =
=) (3-2√2)² + 1/(3-2√2) =) 9-2(3-2√2)+(2√2)²+1/(3)²-2(3-2√2)+(2√2)²
=) 9-6-4√2+4(2)+1/ 9-6-4√2+4(2)
=) 3-4√2 +8+1/3-4√2+8
=) 3+8+1-4√2= 3+8-4√2
=) 12-4√2=11-4√2
=) 12-11=4√2-4√2
=) 1 =0
then answer is 1
please mark as brain list answer please

Abarajith: Thanks
Abarajith: Brainliest answer
Answered by DaIncredible
3
Heya there !!!
Here is the answer you were looking for :

Identities used :

 {(x + y)}^{2}  =  {x}^{2}  +  {y}^{2}  + 2xy \\ (x  + y)(x - y) =  {x}^{2}  -  {y}^{2}

a = 3 - 2 \sqrt{2}  \\  \\  \frac{1}{a}  =  \frac{1}{3 - 2 \sqrt{2} }

On rationalizing the denominator we get,

 \frac{1}{a}  =  \frac{1}{3 - 2 \sqrt{2} }  \times  \frac{3 + 2 \sqrt{2} }{3 + 2 \sqrt{2} }  \\  \\  \frac{1}{a}  =  \frac{3  +  2 \sqrt{2} }{ {(3)}^{2} -  {(2 \sqrt{2} )}^{2}  }  \\  \\  \frac{1}{a}  =  \frac{ 3 + 2 \sqrt{2} }{9 - 8}  \\  \\  \frac{1}{a}  = 3 + 2 \sqrt{2}  \\  \\ a +  \frac{1}{a}  = (3 - 2 \sqrt{2} ) + (3 + 2 \sqrt{2} ) \\  \\ a +  \frac{1}{a}  = 3 - 2 \sqrt{2}  + 3 + 2 \sqrt{2} \\  \\ a +  \frac{1}{a}  =  6 \\

On squaring both the sides we get,


 {(a +  \frac{1}{a} )}^{2}  =  {(6)}^{2}  \\  \\  {(a)}^{2}  +  {( \frac{1}{a} )}^{2}  + 2 \times a \times  \frac{1}{a}  = 36 \\  \\  {a}^{2}  +  \frac{1}{ {a}^{2} }  + 2 = 36 \\  \\  {a}^{2}  +  \frac{1}{ {a}^{2} }  = 36 - 2 \\  \\  {a}^{2}  +  \frac{1}{ {a}^{2} }  = 34

Hope this helps!!!

If you have any doubt regarding to my answer, feel free to ask in the comment section ^_^

@Mahak24

Thanks...
☺☺
Similar questions