Math, asked by gamingtechnically3, 2 months ago

a = √3-√2/√3+√2 and b = √3+√2/√3-√2 , Find the value of a²+b² - 5ab.​

Answers

Answered by Anonymous
23

Explanation :

Given :

  • \sf a=\dfrac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}}

  • \sf b=\dfrac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}

\\ \bf a=\dfrac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}}

Rationalising the denominator,

\implies\sf a=\dfrac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}}\times\dfrac{\sqrt{3}-\sqrt{2}}{\sqrt{3}-\sqrt{2}}

Using identity (a + b)(a - b) = (a² - b²),

\\ \implies\sf a=\dfrac{(\sqrt{3}-\sqrt{2})^2}{(\sqrt{3})^2-(\sqrt{2})^2}

Using identity (a - b)² = a² - 2ab + b²,

\\ \implies\sf a=\dfrac{(\sqrt{3})^2-2(\sqrt{3})(\sqrt{2})+(\sqrt{2})^2}{3-2}

\\ \implies\sf a=\dfrac{3-2\sqrt{6}+2}{1}

\\ \implies\sf a=3+2-2\sqrt{6}

\\ \therefore\boxed{\pmb{\sf a=5-2\sqrt{6}.}}

\\ \\ \bf b=\dfrac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}

Rationalising the denominator,

\implies\sf b=\dfrac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}\times\dfrac{\sqrt{3}+\sqrt{2}}{\sqrt{3}+\sqrt{2}}

Using identity (a + b)(a - b) = (a² - b²),

\\ \implies\sf b=\dfrac{(\sqrt{3}+\sqrt{2})^2}{(\sqrt{3})^2-(\sqrt{2})^2}

Using identity (a + b)² = a² + 2ab + b²,

\\ \implies\sf b=\dfrac{(\sqrt{3})^2+2(\sqrt{3})(\sqrt{2})+(\sqrt{2})^2}{3-2}

\\ \implies\sf b=\dfrac{3+2\sqrt{6}+2}{1}

\\ \implies\sf b=3+2+2\sqrt{6}

\\ \therefore\boxed{\pmb{\sf b=5+2\sqrt{6}.}}

\\

Now,

\bf a=5-2\sqrt{6}

\sf a^2=(5-2\sqrt{6})^2

Using identity (a - b)² = a² - 2ab + b²,

\sf a^2=(5)^2-(2)(5)(2\sqrt{6})+(2\sqrt{6})^2

\therefore\boxed{\pmb{\sf a^2=25-20\sqrt{6}+24.}}

\\ \\ \bf b=5+2\sqrt{6}

\sf b^2=(5+2\sqrt{6})^2

Using identity (a + b)² = a² + 2ab + b²,

\sf a^2=(5)^2+(2)(5)(2\sqrt{6})+(2\sqrt{6})^2

\therefore\boxed{\pmb{\sf b^2=25+20\sqrt{6}+24.}}

\\

Now,

  • a = 5 - 26
  • b = 5 + 26
  • a² = 25 - 206 + 24
  • b² = 25 + 20√6 + 24

\\ =\sf a^2+b^2-5ab

\\ =\sf 25-20\sqrt{6}+24+25+20\sqrt{6}+24-5[(5-2\sqrt{6})(5+2\sqrt{6})]

Using identity (a + b)(a - b) = (a² - b²),

\\ =\sf 25-20\sqrt{6}+24+25+20\sqrt{6}+24-5[(5)^2-(2\sqrt{6})^2]

Cancelling 20√6,

\\ =\sf 25\ \cancel{-20\sqrt{6}}\ +24+25\ \cancel{+20\sqrt{6}}\ +24-5[25-24]

\\ =\sf 25+24+25+24-5[1]

\\ =\sf 50+48-5

\\ =\sf 98-5

\\ =\sf 93

\\ \\ \therefore\boxed{\pmb{\bf a^2+b^2-5ab=93.}}

Similar questions