Math, asked by bharathlalam, 3 months ago

A(3,2),B(-2,-3), C(2,3), form a trian
gle or not?​

Answers

Answered by Tomboyish44
8

Answer:

Yes, they form a triangle.

Step-by-step explanation:

In order for any three points to form a triangle, the sum of the length of two sides must be greater than the length of the third side.

So, we'll need to find the length of AB, BC and CA, and then compare them. We'll find the lengths of the sides using the distance formula.

For any two points (x₁, y₁) and (x₂, y₂), the distance between the two points is given by the Distance formula.

\sf Distance \ Formula = \sqrt{(x_2 - x_1)^2  + (y_2 - y_1)^2}

AB's Distance:

A ➝ (3, 2)

B ➝ (-2, -3)

\sf \dashrightarrow AB = \sqrt{(x_2 - x_1)^2  + (y_2 - y_1)^2}

\sf \dashrightarrow AB = \sqrt{(-2 - 3)^2  + (-3 - 2)^2}

\sf \dashrightarrow AB = \sqrt{(-5)^2  + (-5)^2}

\sf \dashrightarrow AB = \sqrt{25 + 25}

\sf \dashrightarrow AB = \sqrt{50}

\sf \dashrightarrow AB = 5\sqrt{2} \ units.

BC's Distance:

B ➝ (-2, -3)

C ➝ (2, 3)

\sf \dashrightarrow BC = \sqrt{(x_2 - x_1)^2  + (y_2 - y_1)^2}

\sf \dashrightarrow BC = \sqrt{(2 - (-2))^2  + (3 - (-3))^2}

\sf \dashrightarrow BC = \sqrt{(2 + 2)^2  + (3 + 3)^2}

\sf \dashrightarrow BC = \sqrt{(4)^2  + (6)^2}

\sf \dashrightarrow BC = \sqrt{16  + 36}

\sf \dashrightarrow BC = \sqrt{52}

\sf \dashrightarrow BC = 2\sqrt{13} \ units.

CA's Distance:

C ➝ (2, 3)

A ➝ (3, 2)

\sf \dashrightarrow CA = \sqrt{(x_2 - x_1)^2  + (y_2 - y_1)^2}

\sf \dashrightarrow CA = \sqrt{(3 - 2)^2  + (2 - 3)^2}

\sf \dashrightarrow CA = \sqrt{(1)^2  + (-1)^2}

\sf \dashrightarrow CA = \sqrt{1 + 1}

\sf \dashrightarrow CA = \sqrt{2} \ units.

Now;

Comparing AB + BC with CA we get;

\dashrightarrow \sf \ AB + BC > CA

\dashrightarrow \sf \ 5\sqrt{2} + 2\sqrt{13} > \sqrt{2}

\dashrightarrow \sf \ 7.071 + 7.211 > 1.414 \ \big(Approximate \ values\big)

\dashrightarrow \sf \ 14.282 > 1.414

AB + BC is greater than CA.

‎‎

Comparing BC + CA with AB we get;

\dashrightarrow \sf \ BC + CA > AB

\dashrightarrow \sf \ 2\sqrt{13} + \sqrt{2} > 5\sqrt{2}

\dashrightarrow \sf \ 7.211 + 1.414 > 7.071 \ \big(Approximate \ values\big)

\dashrightarrow \sf \ 8.625 > 1.414

BC + CA is greater than AB.

Comparing CA + AB with BC we get;

\dashrightarrow \sf \ CA + AB > BC

\dashrightarrow \sf \ \sqrt{2} + 5\sqrt{2} \ > \ 2\sqrt{13}

\dashrightarrow \sf \ \sqrt{2}(1 + 5) \ > \ 2\sqrt{13}

\dashrightarrow \sf \ 6\sqrt{2} \ > \ 2\sqrt{13}

\dashrightarrow \sf \ 8.485 \ > \ 7.211 \ \big(Approximate \ values\big)

CA + AB is greater than BC.

All three conditions are satisfied, therefore the given points form a triangle.

Answered by llSweetRainbowll
53

Answer:

:\impliesYes,they form a triangle.

hope it helps uh :)

Similar questions