Math, asked by yugan4779, 1 month ago

A = [ 3-2 prove that A^2-A+2I=0
4 -2]

Answers

Answered by mathdude500
6

\large\underline{\sf{Solution-}}

Given matrix is

\rm :\longmapsto\:A = \begin{gathered}\sf\left[\begin{array}{cc}3&-2\\ 4& - 2\end{array}\right]\end{gathered}

Now, we have to prove that,

\rm :\longmapsto\: {A}^{2} - A + 2I = 0

So,

Let consider

\rm :\longmapsto\: {A}^{2}

 \rm \:  =  \: \begin{gathered}\sf\left[\begin{array}{cc}3&-2\\ 4& - 2\end{array}\right]\end{gathered} \times \begin{gathered}\sf\left[\begin{array}{cc}3&-2\\  4& - 2\end{array}\right]\end{gathered}

 \rm \:  =  \: \begin{gathered}\sf\left[\begin{array}{cc}9 - 8&-6 + 4\\ 12- 8& - 8 + 4\end{array}\right]\end{gathered}

\rm \:  =  \: \begin{gathered}\sf\left[\begin{array}{cc}1&-2\\ 4& - 4\end{array}\right]\end{gathered}

Now,

\rm :\longmapsto\:2I

\rm \:  =  \: 2\begin{gathered}\sf\left[\begin{array}{cc}1&0\\ 0& 1\end{array}\right]\end{gathered}

\rm \:  =  \: \begin{gathered}\sf\left[\begin{array}{cc}2&0\\ 0& 2\end{array}\right]\end{gathered}

Thus, Now consider,

\rm :\longmapsto\: {A}^{2} - A + 2I

\rm \:  =  \: \begin{gathered}\sf\left[\begin{array}{cc}1&-2\\ 4& - 4\end{array}\right]\end{gathered} - \begin{gathered}\sf\left[\begin{array}{cc}3&-2\\ 4& - 2\end{array}\right]\end{gathered} + \begin{gathered}\sf\left[\begin{array}{cc}2&0\\ 0& 2\end{array}\right]\end{gathered}

can be re-arranged as

\rm \:  =  \: \begin{gathered}\sf\left[\begin{array}{cc}1&-2\\ 4& - 4\end{array}\right]\end{gathered} + \begin{gathered}\sf\left[\begin{array}{cc}2&0\\ 0& 2\end{array}\right]\end{gathered} - \begin{gathered}\sf\left[\begin{array}{cc}3&-2\\ 4& - 2\end{array}\right]\end{gathered}

\rm \:  =  \: \begin{gathered}\sf\left[\begin{array}{cc}3&-2\\ 4& - 2\end{array}\right]\end{gathered} - \begin{gathered}\sf\left[\begin{array}{cc}3&-2\\ 4& - 2\end{array}\right]\end{gathered}

\rm \:  =  \: \begin{gathered}\sf\left[\begin{array}{cc}0&0\\ 0& 0\end{array}\right]\end{gathered}

Hence,

\bf :\longmapsto\: {A}^{2} - A + 2I = 0

Additional Information :-

1. Matrix multiplication is possible only when number of columns of pre - multiplier is equal to number of rows of post multiplier otherwise matrix multiplication is not defined.

2. Matrix multiplication may or may not be Commutative.

3. Matrix multiplication is Distributive.

Similar questions