Math, asked by Yuva1313, 10 months ago

A=[3 -4 -1 2] ,find a matrix B such that AB=I

Answers

Answered by ashishks1912
18

GIVEN :

The matrix A=\left(\begin{array}{cc}3&-4\\-1&2\end{array}\right)

TO FIND :

The matrix B such that AB=I

SOLUTION :

Given that the matrix is A=\left(\begin{array}{cc}3&-4\\-1&2\end{array}\right)

Now we have to find the matrix B such that AB=I

We know that the Identity Matrix for 2x2 matrix is given by

I=\left(\begin{array}{cc}1&0\\0&1\end{array}\right)

Substitute the matrices in the equation AB=I we get

AB=I

B=IA^{-1}

The formula for A^{-1} is A^{-1}=\frac{adjA}{|A|}

Now find |A|:

|A|=\left|\begin{array}{cc}3&-4\\-1&2\end{array}\right|

=6-4

⇒ |A|=2

adjA=\left(\begin{array}{cc}2&4\\1&3\end{array}\right)

A^{-1}=\frac{adjA}{|A|}

=\frac{\left(\begin{array}{cc}2&4\\1&3\end{array}\right)}{2}

A^{-1}=\left(\begin{array}{cc}1&2\\\frac{1}{2}&\frac{3}{2}\end{array}\right)

Now in B=IA^{-1} we have that

B=IA^{-1}

B=\left(\begin{array}{cc}1&0\\0&1\end{array}\right)\left(\begin{array}{cc}1&2\\\frac{1}{2}&\frac{3}{2}\end{array}\right)

B=\left(\begin{array}{cc}1&2\\\frac{1}{2}&\frac{3}{2}\end{array}\right)

⇒ the matrix B is \left(\begin{array}{cc}1&2\\\frac{1}{2}&\frac{3}{2}\end{array}\right)

B=\left(\begin{array}{cc}1&2\\\frac{1}{2}&\frac{3}{2}\end{array}\right)

Similar questions