CBSE BOARD X, asked by SionaDalmet, 11 months ago

A ( -3 ,4 ) , B ( -5 , 0 ) , C ( 3 , 0 ) are the vertices of triangle ABC . Find the coordinates of the circumcenter of triangle ABC . Also find the radius of circumcircle​

Answers

Answered by Delta13
32

Let the circumcentre be O(h,k)

O is equidistant from all points

The points given are A(-3, 4) , B(-5, 0) and C(3 ,0)

The circumcircle passes through A, B and C

thus,

AO = BO = CO

==> AO² = BO² = CO²

Distance formula

D =  \sqrt{( {x_2 - x_1)}^{2}  + (y_2 - y_1) {}^{2} }

AO² = BO²

  \scriptsize{ \left(h -( - 3) \right) }^{2}  +  ( {k - 4)} ^{2}  =  \left( {h - ( - 5)} \right)^{2}  + ( {k - 0)}^{2}  \\  \\  \small(h + 3) {}^{2}  + (k - 4) {}^{2}  =  {(h + 5)}^{2}  +  {k}^{2}  \\   \\  \texttt{Using identities} \\  {(a + b)}^{2} =  {a}^{2}  +  {b}^{2}  + 2ab \\  {(a - b)}^{2}  =  {a}^{2} +  {b}^{2}   - 2ab \\  \\  \scriptsize {h}^{2}  + 9 + 6h +  {k}^{2}  + 16 - 8k =  {h}^{2}  + 25 + 10h +  {k}^{2}  \\  \\   \scriptsize \cancel{h {}^{2} } + 6h +  \cancel{k {}^{2} } + 9 + 16 - 8k =  \cancel{h {}^{2} } + 25 + 10h +  \cancel{k {}^{2} } \\  \\  \small  6h + 25 - 8k = 25 + 10h \\  \\ 6h - 8k +  \cancel{25} =  \cancel{25} + 10h \\  \\  - 8k = 10h - 6h \\  \\  - 8k = 4h \\  \\ k =  -  \frac{4h}{8}

AO² = CO²

 \scriptsize \left(h - ( - 3) \right) {}^{2}  + ( {k - 4)}^{2}  = ( {h - 3)}^{2}  + (k - 0) {}^{2}  \\  \\ \small ( {h + 3)}^{2}  + ( {k - 4)}^{2}  = ( {h - 3)}^{2}  +  {k}^{2}  \\  \\  \scriptsize  {h}^{2}  + 9 +  6h +  {k}^{2}  + 16 - 8k =  {h}^{2}  + 9 - 6h +{k}^{2}  \\  \\   \scriptsize\cancel {h {}^{2} } +  6h +  \cancel{k {}^{2} } + \cancel 9 + 16 - 8k =  \cancel{h {}^{2} } +  \cancel9 -  6h  +  \cancel{k {}^{2} } \\  \\  \small 16  - 8k =  - 6h - 6h \\  \\ 16 - 8k =  - 12h \\  \\  \texttt{Putting the value of k}  \\ \\ 16 - 8 \left( -  \frac{4h}{8}  \right) =  - 12h \\  \\ 16 -  \cancel8 \left( -  \frac{4h}{ \cancel8}  \right) =  - 12h \\  \\ 16 + 4h =  - 12h \\  \\ 16 =  - 12h - 4h \\  \\ 16 =  - 16h \\  \\ h =  -  \frac{16}{16}  \\  \\  \boxed  { \green{h =  - 1}}

Now substituting the value of h in k = -4h/8

k =  -  \frac{4( - 1)}{8}  \\  \\ k =  \frac{4}{8}  \\  \\  \boxed{ \green{k =  \frac{1}{2} }}

Hence, the coordinates of circumcentre are  \boxed{O \left( - 1, \frac{1}{2}  \right)}

Radius = OC

OC =  \sqrt{( {x_2 - x_1)}^{2} +  {(y_2 - y_1)}^{2}  }

 =  \sqrt{   { \left(3 - ( - 1) \right)}^{2} +  {(0 -  \left( \frac{1}{2} \right) })^{2}  }  \\  \\  =  \sqrt{ {(3 + 1)}^{2}  +  \left(  \frac{1}{2} \right) {}^{2} }  \\  \\  =  \sqrt{ {4}^{2} +  \frac{1}{4}  }   \\  \\  =  \sqrt{16 +  \frac{1}{4} }  \\  \\   = \sqrt{ \frac{16(4) + 1}{4} }  \\  \\  =  \sqrt{ \frac{64 + 1}{4} }  \\  \\  =  \sqrt{ \frac{65}{4} }  \\  \\  =   \frac{  \sqrt{65} }{2}

Hope it helps you

Attachments:
Similar questions