Math, asked by ItxAttitude, 21 hours ago

A=\ 3,5,7,9,11\ and B=\ 7,9,11,13\ , C=\ 11,13,15\

Find

\bf{A \cap \: B) \cap (B \: \cup \: c)​}A∩B)∩(B∪c)​

Answers

Answered by EmperorSoul
15

\large\underline{\sf{Given- }}

\rm :\longmapsto\:A = \{3,5,7,9,11\}

\rm :\longmapsto\:B = \{7,9,11,13\}

\rm :\longmapsto\:C = \{11,13,15\}

\large\underline{\sf{To\:Find - }}

\rm :\longmapsto\:(A\cap B)\cap (B\cup C)

 \green{\large\underline{\sf{Solution-}}}

Given that,

\rm :\longmapsto\:A = \{3,5,7,9,11\}

\rm :\longmapsto\:B = \{7,9,11,13\}

\rm :\longmapsto\:C = \{11,13,15\}

Now, Consider

\rm :\longmapsto\:A\cap B

\rm \:  =  \: \{3,5,7,9,11\}\cap \{7,9,11,13\}

\rm \:  =  \: \{7,9,11\}

Now, Consider

\rm :\longmapsto\:B\cup C

\rm \:  =  \: \{7,9,11,13\}\cup \{11,13,15\}

\rm \:  =  \: \{7,9,11,13,15\}

Now, Consider

\purple{\rm :\longmapsto\:(A\cap B)\cap (B\cup C) \: }

\rm \:  =  \: \{7,9,11\}\cap \{7,9,11,13,15\}

\rm \:  =  \: \{7,9,11\}

Hence,

\rm\implies \:\boxed{\tt{ (A\cap B)\cap (B\cup C) = \{7,9,11\} \: }} \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

LEARN MORE :-

1. Commutative Law

\boxed{\tt{A \cap B = B\cap A \: }} \\

\boxed{\tt{A \cup B = B\cup A \: }} \\

2. Associative Law

\boxed{\tt{ (A\cup B)\cup C = A\cup (B\cup C) \: }} \\

\boxed{\tt{ (A\cap B)\cap C = A\cap (B\cap C) \: }} \\

3. Distributive Law

\boxed{\tt{ A\cup (B\cap C) = (A\cup B)\cap (A\cup C) \: }} \\

\boxed{\tt{ A\cap (B\cup C) = (A\cap B)\cup (A\cap C) \: }} \\

4. De Morgan's Law

\boxed{\tt{ (A\cup B)' = A'\cap B' \: }} \\

\boxed{\tt{ (A\cap B)' = A'\cup B' \: }} \\

Answered by ramankumarjindal786
0

Step-by-step explanation:

This is the answer

HOPE YOU LIKE MY ANSWER MARK ME AS BRAINLIST

Attachments:
Similar questions