Math, asked by hanumantjagadale8, 1 month ago

a) (3 ^ 7)/(3 ^ 4 * 3 ^ 3)
please solve fast​

Answers

Answered by ravan2009
4

Question:

Solve \frac{(3 ^ 7)}{(3 ^ 4 \times 3 ^ 3)}\\

Solution:

\frac{(3 ^ 7)}{(3 ^ 4 \times 3 ^ 3)}\\\\\\a^m\times a^n=a^{m+n}\\\\\\\frac{(3 ^ 7)}{(3 ^{4+3})}\\\\\\\frac{3^7}{3^7}\\\\\\\frac{a^m}{a^n}=a^{m-n}\\\\\\\frac{3^7}{3^7}\\\\\\3^{7-7}\\\\\\=3^0\\\\\\a^0=1\\\\\\=3^0\\\\\\=1

Answer:

\frac{(3 ^ 7)}{(3 ^ 4 \times 3 ^ 3)}=1

Extra Information:

Some Laws of exponents

\begin{gathered}\boxed{\begin{minipage}{5 cm}\bf{\dag}\:\:\underline{\text{Law of Exponents :}}\\\\\bigstar\:\:\sf\dfrac{a^m}{a^n} = a^{m - n}\\\\\bigstar\:\:\sf{(a^m)^n = a^{mn}}\\\\\bigstar\:\:\sf(a^m)(a^n) = a^{m + n}\\\\\bigstar\:\:\sf\dfrac{1}{a^n} = a^{-n}\\\\\bigstar\:\sf\sqrt[\sf n]{\sf a} = (a)^{\dfrac{1}{n}}\end{minipage}}\end{gathered}

Be Brainly!

Similar questions