a^3+b^3=(a-b) (a^2+ab+b^2)
Answers
Answer:
Very well known mathematical identity is
[math](a+b)^3=a^3+3a^2b+3ab^2+b^3[/math]
[math]&[/math]
[math](a-b)^3=a^3-3a^2b+3ab^2-b^3[/math]
The above can be derived easily by successive multiplication like
([math]a+b)^2=(a+b)*(a+b)[/math]
[math]=(a^2+a*b+b*a+b^2)[/math]
[math]=(a^2+2ab+b^2)[/math]
[math]So (a+b)^3[/math]
[math]=(a+b)^2*(a+b)[/math]
[math]=(a^2+2ab+b^2)*(a+b)[/math]
[math]=a^3+2a^2b+b^2a+a^2b+2ab^2+b^3[/math]
[math]=a^3+3a^2b+3ab^2+b^3[/math]
Similar for the other .
Now starting with the second identity
[math](a-b)^3=a^3-3a^2b+3ab^2-b^3[/math]
[math]Or, (a-b)^3 +3a^2b-3ab^2=a^3-b^3[/math]
[math]Or, (a-b)^3 +3ab(a-b)=a^3-b^3[/math]
[math]Or, (a-b)[ (a-b)^2 + 3ab ]=a^3-b^3[/math]
[math]Or, (a-b)(a^2–2ab+b^2+3ab)=a^3-b^3[/math]
[math]Or, (a-b)(a^2+ab+b^2)=a^3-b^3[/math]
[math]Or, a^3-b^3= (a-b)(a^2+ab+b^2)[/math]
You can do it from the opposite part like
[math](a-b)(a^2+ab+b^2)[/math]
[math]=a*(a^2+ab+b^2)-b*(a^2+ab+b^2)[/math]
[math]=a^3+a^2b+ab^2-ba^2-ab^2-b^3[/math]
[math]=a^3-b^3[/math]
So
[math]\boxed{a^3-b^3= (a-b)(a^2+ab+b^2)}[/math]
Step-by-step explanation:
hope it will help you please follow me and mark me as brainlist