(a^3+b^3+c^3 -3abc) ÷ (a+b+c)
Answers
Answered by
1
Identity to use : a³ + b³ + c³ - 3abc = (a+b+c)(a²+b²+c² - ab - bc - ca)
(a+b+c) get's cancelled on the numerator and the denominator
Answer =≥ (a² + b² + c² - ab -bc - ca)
----------------------------------------------------------------------------------------------------------------------------------------------
Some more identities :
(a+b)² = a² + 2ab + b²
(a-b)² = a² - 2ab + b²
(a+b+c)² = a² + b² + c² + 2ab + 2bc + 2ca
(x+a)(x+b) = x² + x(a+b) + ab
(a+b)³ = a³ + 3a²b + 3ab² + b³
a³ + b³ = (a+b)(a²-ab + b²)
(a-b)³ = a³ - 3a²b + 3ab² - b³
a³-b³ = (a-b)(a²+ab+b²)
Conditional identity:
if a+b+c = 0,
a³ + b³ + c³ = 3abc
____________________________________________________________________________
Similar questions