a^3+b^3+c^3=3abc and a+b+c=0 the prove that
Answers
Answered by
1
Step-by-step explanation:
a³+b³+c³=3abc
a+b+c=0
a+b= -c
(a+b)³= (-c)³
(a+b)³= (-c)³
a³+b³+3ab(a+b) = -c³ [a+b= -c]
a³+b³+3ab(-c) = -c³
a³+b³-3abc= -c³
a³+b³+c³-3abc
a³+b³+c³=3abc
hence it is proved that a³+b³+c³=3abc
Similar questions