Math, asked by vanisrini, 9 months ago

a^3+b^3+c^3=3abc and a+b+c=0 the prove that

Answers

Answered by studyloveinfinity
1

Step-by-step explanation:

a³+b³+c³=3abc

a+b+c=0

a+b= -c

(a+b)³= (-c)³

(a+b)³= (-c)³

a³+b³+3ab(a+b) = -c³ [a+b= -c]

a³+b³+3ab(-c) = -c³

a³+b³-3abc= -c³

a³+b³+c³-3abc

a³+b³+c³=3abc

hence it is proved that a³+b³+c³=3abc

Similar questions